چکیده
هدف این مقاله، تعيين مدل برای توسعه ظرفیت پالايشگاه‌هاي توليد بیواناتول سوختي در ايران است. به دليل منطقه‌نوي و نوآورانی، در ميزان مواد اوليه ناپایداري و وجود دارد، با پيامدهای مدل برنامه‌رسي قطعي پردايي احتمالات بيشنيايد ميزيت مدل برنامه‌ريزي قطعي خطي برای يک دوره و در چارچوب حداقي سازي هزينه‌هاي عرضه كننده سوخت ارازي كرده است. مدل كه اين نوشتار براي توسعه ظرفیت پالايشگاه‌هاي مورد بررسی ارائه مي‌دهد دوايقّ به گونه‌اي است كه هزينه‌هاي ناشي ازعرضه سوخت (بنزين و اتانول سوختی) توسط عرضه كننده را به حداقي مي‌رساند. نتاني حاکي از آن است كه توسعه ظرفیت پالايشگاه‌هاي مورد بررسی منجر به كاهش هزينه‌هاي عرضه كننده سوخت به ميزان تقريبي 6 ميليارد ريال مي‌گردد.
1. مقدمه

از دیپیاک انرژی در زندگی بشر نقش مهمی ایفا می‌نموده و نحوه تأمین انرژی به صورتی که ارزان‌تر، ایمن‌تر و در دسترس باشد برای توسعه اقتصادی و بهبود زندگی امروزی شایان توجه بوده است. با این حال همچنان بخش عظیمی از انرژی مورد نیاز جهان از طریق سوخت‌های فسیلی تأمین می‌گردد که به دلیل تجدیدپذیری و محدود بودن این منابع سوختی و نیز مشکلات زیست‌محیطی ناشی از مصرف آن‌ها توسعه اقتصادی جوامع بشری در سال‌های آتی با مشکلات چندی روبرو می‌گردد. استفاده از سوخت‌های زیستی به عنوان یک جانشین مناسب برای سوخت‌های فسیلی چه از منظر اقتصادی و چه از منظر زیست‌محیطی مورد توجه است. به سوخت‌های حاصل از مواد آلی گیاهان مانند زیست‌توسط شاخص منابع اولیهای همچون چوب و همچنین سوخت‌های اشتقاچی مانند انیول، متانول و بیوگاز، سوخت‌زیستی می‌گویند (جلسه‌گزاری ۱۳۷۴). انیول نیز نوعی سوخت است که اگر از زیست‌توسط تولیدگرده، بیویانول خوانده می‌شود. در واقع بیویانول نام سیستماتیک ابتل الکل (C₂H₅OH) می‌باشد که مایع قابل استفاده، نارنجی رنگ و جدا از ارزش آن به عنوان حلول و ماده‌دار بسیاری از فرآیندهای شیمیایی، ممکن است به عنوان سوخت برای احتراق مونتاً یا به صورت مخلوط با بنزین استفاده شود (جلسه‌گزاری ۱۳۷۴). نیروهای محور اقتصادی اصلی برای توسعه بیوپلاست و بیویانول در آسیا، امیت انرژی، بهبود تراز تجارت وگسترش بخش کشاورزی است (روزنمایی ۱۳۸۰ و دیگران ۱۳۸۰). در ایالات متحده شوک‌های نفت و افزایش هزینه‌های زیست‌محیطی در دهه ۱۹۷۰ و طرح سیاست‌های دولت تدریس برای کاهش وابستگی ایالات متحده به سوخت‌های فسیلی خصوصاً نفت خارجی - موجب رشد صنایع انیول گردید (سویفت، ۱۳۸۰: ۱۳۰۰۰). و بازار انیول که در سال ۱۹۷۵ کمتر از یک میلیارد لیتر تولید می‌کرد در سال ۲۰۰۶ به رشد بیش از ۳۳ میلیارد لیتر رسید (لیو، ۲۰۰۶). ایالات متحده امیرکا و برزیل با یکدیگر حدود ۹۰ درصد از تولید سوخت زیستی را به خود اختصاص داده‌اند. در سال ۲۰۰۷ ایالات متحده امیرکا ۱۸ میلیارد لیتر (۴۶ درصد از تولید کل)

1. Zhou
2. Soetaert
3. Licht
بیوانتول، معمولی ترین سوخت زیستی در چهار به خصوص در برزیل است. برزیل و هنگرتن قصد. در این میان برزیل و ایالات متحده آمریکا دو مصرف کننده بزرگ بیوانتول زیستی بوده و هرکدام از این کشورها از تاریخچه طولانی در مصرف بیوانتول زیستی برخوردار می‌باشد (کوشن و دیگران ۱۹۸۳:۱۶۱).

در ایران نیز میزان تولید ضایعات کشاورزی بسیار بالاست و روش برخوردار فعّالی باید یافته باشد. اقتصادی بودن تولیدات کشاورزی را در بلندمدت مورد ترکیب قرار می‌دهد. از طرفی بیوانتول را می‌توان از پسماندهای کشاورزی استحصال نمود. یک فردی حاضر به دنبال ارزش مجدد برای توسه طرفیت بالایی که بیوانتول در ایران با محوریت استفاده از میان و در این میان سیستمیک برای افراد به احتمال برداشتن زانو را از زانو را کشاورزی استفاهه می‌کند. هدف تصمیم گیرنده را در مصرف طرفیت بالایی که بیوانتول در ایران به منظور کاهش نزیقه یاری عرضه کننده سوخته است که در پایان عرضه سوخت تصمیم گیری می‌کند.
چاپگذین نماید. هدف مورد نظر با ارائه یک مدل برنامه‌ریزی قطعی برای حداکثر کردن هزینه‌های تک دوره‌ای تامین سوخت تحت یکسری قیود دنبال می‌گردد. در این گونه از تصمیم‌گیری، هنگام انتخاب جواب به‌هیچ‌وجه از میان مجموعه امکان‌پذیر، داده‌های مستقل به‌پهنه‌سازی از قبل تهیه شده هستند.

(صفرای، 1391، 8:1391-8). در ادامه مبانی نظری بیان می‌گردد و بخش مهم بر روی تحقیق اختصاص دارد. توصیف داده‌ها و نتایج تجربی به‌ترتیب در بخش جهانی و بخش مورد بررسی قرار گرفت. نهایتاً در قسمت ششم جمع‌بندی صورت می‌گیرد.

۲. مبانی نظری

هم اکنون در کشور، ماده اتمی‌بندی (میتی‌تترا بوتیل اتر) به عنوان عامل اکسیژن‌دهنده به بنزین افزوده می‌شود. سردرد، سرگیجه، تهوع، آلرژی، و مشکلات تنفسی از مهم‌ترین و شایع‌ترین عوارض این ماده سرطان‌زا در انسان است. امیتی‌پنی در آب به‌صورت محلول است و اسپین آبی به‌صورت محلول در آب به‌صورت کم موجب تغییر طعم و بوی آب آشامیدنی می‌گردد و بیش از سایر اجزای بنزین نسبت به تجزیه بیولوژیکی پایدار است. مطالعات نشان می‌دهد که این ماده به سرعت در سطح آب پراکنده می‌گردد و تبخیر آن از سطح آب چندین هفته به دراز می‌کشد (نذیم، 1380) در حالی که با چاپگذین کردن اتانول به عنوان عامل اکسیژن‌دهنده از میزان آلاینده‌گویی بنزین سوز کاسته می‌شود. در داخل کشور مطالعه می‌دانی چنی در زمینه تولید و گسترش صنایع تولید اتانول سوخت نگرفته است. پژوهش حاضر نیز درصد احتمال به‌هیچ‌وجه برای انتخاب مکان و میزان پهنه‌های اقتصادی توسعه ظرفیت پلاستی‌گاه‌های تولید بیوتانول ایران از طریق حداکثر هزینه‌های عرضه کننده سوخت، می‌باشد. در ادامه اقدام به

معنی چند مطالعه در زمینه توسعه ظرفیت پلاستی‌گاه‌های اتانول می‌گردد:

1. MTBE (Methyl Tertiary Butyl Ether)
2. Nadim
پارکر و همکاران (2010) در مقاله ای تحت عنوان "توسعه بهینه منحنی عرضه پلاسیگاه زیستی" یک مدل بهینه‌ی برای تعیین مکان پلاسیگاه زیستی گسترش می‌دهند. او همکارانش پتانسیل عرضه سوخت زیستی در جنوب ایالات متحده از زیست توده کشاورزی، چنگلی و شهری را مورد ارزیابی قرار می‌دهند و اطلاعاتی همچون منابع مواد اولیه، موقعیت فعلی پلاسیگاه‌ها و شبکه حمل و نقل را در یک مدل بهینه‌یایی عددی بهترین مکان‌های قرار گیری. در این کار، موقعیت بهینه، نوع و اندازه تکنولوژی پلاسیگاه زیستی با اعمال تابع هدف حداکثرسازی برای زنجیره عرضه و تفاعلات سوخت زیستی ارائه می‌گردد. همچنین تحلیل حساسیتی به منظور کشف امکان‌پذیری بودن اعمال سیاست و تغییر در تکنولوژی انجام می‌دهند. نتایج این پژوهش نشان می‌دهد که چگونگی

15/14% از تفاعلات سوخت‌های حمل و نقل منطقه امکان‌پذیر می‌باشد.

لدوک و همکاران (2020) در مقاله‌ای تحت عنوان "موقوفیت بهینه پلاسیگاه زیستی اتanol
لیگندولوزی چند نسلی در سوند" یک مدل تولید انرژی برای تولید اتانول ارائه می‌دهند. موقعیت چگرایی‌ای پلاسیگاه نسبت به محل زیست توده و حمل و نقل سوخت و حرارت اهمیت دارد. بنابراین آن‌ها یک مدل بهینه‌یایی برای تعیین مکان بهینه این پلاسیگاه‌ها مقدمه‌دارند. و پارامترهای ورودی و برای بررسی تأثیر این پارامترها بر هزینه نهایی تولید اتانول و موقعیت بهینه پلاسیگاه مورد مطالعه قرار می‌دهند. نتایج این پژوهش نشان می‌دهد که نقش هزینه زیست توده و در دسترس بودن آن برای تعیین موقعیت پلاسیگاه و رقابت‌پذیر بودن اتانول تولیدی با اتانول اردازی بسیار مهم است، همچنین برشته‌های تولید اتانول در سود و تغییر مکان پلاسیگاه‌ها را می‌دهد.

جهنگی و همکاران (2014) نیز در مقاله "مدل هزینه برای تولید سوخت زیستی مبتنی بر مواد اولیه جنگلی و کاربرد آن در تعیین انتخاب بهینه تاسیسات" با اشاره به نگرانی‌ها راجع به کاربرد سوخت-های فسیلی و ایمنیت انرژی و افزایش سهم سوخت‌های زیستی در تأمین تفاوت، یک مدل ریاضی برای توصیف هزینه کل سالانه تاسیسات سوخت زیستی مبتنی بر زیست‌توده جنگلی را برای ایالات میشیگان

1. Parker
2. Leduc
3. Jenkins
روش تحقیق

به هنیه‌سازی، فرا‌بنده تجزیه و تحلیل و ارائه راه‌برد برای مسائل است که در آن‌ها یک انتخاب از میان دامنه‌ای از انتخاب‌ها صورت می‌گیرد. انتخاب‌های امکان‌پذیر به عوامل عناصر مجموعه‌ای که به آن مجموعه امکان پذیری از گسترش آن در نظر گرفته شده و هدف یافتن بهترین انتخاب (که زمینه‌ی محصرونه به فرد‌های انتخابی یا حداکثر انتخاب یک گزینه به‌تر نسبت به سایر گزینه‌ها است. انتخاب‌ها با استفاده از تخصیص یک تابع که تابع هدف نامیده می‌شود، با یک‌گدیگر مقایسه می‌گردد. به هنیه‌سازی می‌تواند به صورت گسترش و پیوسته صورت گیرد که در حالی که در حال پیوسته انتخاب‌ها در قابل متغیره‌های حقیقی قابل توصیف است و مجموعه امکان‌پذیری زیر مجموعه‌ای از فضای یا $R^n$ است (رکافار، 1001:2). برنامه‌ریزی قطعی، گونه‌ای از مدل‌های برنامه‌ریزی است، که در آن داده‌های مستقل به‌هنیه‌سازی از پیش تعیین شده.
اند. در واقع در این گونه مدل‌ها متغیر وضعيت سيستم از قطعیت برخوردند و در مورد شکل گیری آن‌ها به عنوان داده‌های مستقله هیچ گونه ترکیبی وجود ندارد (روکافلر، 2001: 43). از آن چا که به دليل متغیر بودن شرایط جوی در مورد میزان مواد اولیه ناتمامیتی وجود دارد بنابراین مدل برنامه‌ریزی قطعی برپاه با احتمالات پیشنهاد می‌گردد. در این روش از ستاروپ بهره برده می‌شود. در واقع ستاروپ همان حالت‌های ممکن یک متغیر احتمالی هستند که با احتمال‌های مختلف امکان وقوع خواهند داشت (شاپیرو، 2000). احتمال عبارت است از معیار کمی "شانس" و یا "امکان" این که یک واقعه معین اتفاق بیافتد (سوختگیان، 2009).

چهار مجموعه در این پژوهش از اهمیت زیادی برخوردار می‌باشند: مجموعه متفاوتی تأمین مواد اولیه، مجموعه استان‌های عرضه کننده مواد اولیه، مجموعه پالایشگاه‌های تولید بیوتانول و مجموعه استان‌های مصرف کننده بیوتانول. همانطور که جدول 1 نشان می‌دهد در فرآیند تولید بیوتانول انتخاب مواد اولیه که عرضه کننده مواد اولیه اولیه با لیک‌ها و c انتخاب مصرف کننده بیوتانول می‌باشد. به ترتیب نماد سئاروپ و احتمال هر سئاروپ می‌باشد. جدول 1 فهرست علائم و اختصارات به کار بردشده در پژوهش خاض را نشان می‌دهد:

1. Scenarios
جدول 1. فهرست علائم و اختصارات

<table>
<thead>
<tr>
<th>پارامترها</th>
<th>شاخص (زیر نویس)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. متغیرهای تصمیم</td>
<td>$I=1.23, k$</td>
</tr>
<tr>
<td>متغیرهای تصمیم</td>
<td>$k=1.23, c$</td>
</tr>
<tr>
<td>متغیرهای تصمیم</td>
<td>$h=1.23, i$</td>
</tr>
<tr>
<td>متغیرهای تصمیم</td>
<td>$w=1.23, c$</td>
</tr>
<tr>
<td>متغیرهای تصمیم</td>
<td>$p=1.23, w$</td>
</tr>
<tr>
<td>متغیرهای تصمیم</td>
<td>$D=1.23, c$</td>
</tr>
<tr>
<td>متغیرهای تصمیم</td>
<td>$X=1.23, i$</td>
</tr>
<tr>
<td>متغیرهای تصمیم</td>
<td>$h=1.23, k$</td>
</tr>
<tr>
<td>متغیرهای تصمیم</td>
<td>$c=1.23, k$</td>
</tr>
<tr>
<td>متغیرهای تصمیم</td>
<td>$t=1.23, k$</td>
</tr>
<tr>
<td>متغیرهای تصمیم</td>
<td>$b=1.23, k$</td>
</tr>
<tr>
<td>متغیرهای تصمیم</td>
<td>$p=1.23, w$</td>
</tr>
<tr>
<td>متغیرهای تصمیم</td>
<td>$D=1.23, c$</td>
</tr>
<tr>
<td>متغیرهای تصمیم</td>
<td>$X=1.23, i$</td>
</tr>
</tbody>
</table>

زهرای تبدیل نیاز از استان عرضه کننده مواد اولیه به پالایشگاه مورد نظر می‌گردد. سپس فرآیند تولید صورت می‌پیشترد و در نهایت بیواناتول تولیدی جهت عرضه به استان‌های مصرف کننده حمل می‌شود. میزان مواد اولیه، با توزیع احتمال مشخص می‌باشد. تابع هدف مشکلی حداکثر سازی هزینه عرضه کننده سوخت می‌باشد که قصد دارد به‌خیصی از بنزین مصرفی را با بیواناتول سوختی جایگزین کند. در این راستا متغیرهای تصمیم عبارتند از: 1- میزان مواد اولیه مصرفی، 2- میزان بیواناتول عرضه شده و 3- میزان بنزین عرضه شده.
باب هدف
با فرض این که دیل متغیر بودن شرایط آب و هوا، میزان مواد اولیه موجود برای تولید بیوتانول احتمالی است، مدلی قطعی بر پایه احتمالات بیشتهاد می‌گردد. هدف و محدودیت‌ها برای مدل پیشنهادی به صورت زیر تعیین می‌شوند:

\[
\text{Min} \left( \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{k=1}^{M} r_{i,j,k} x_{i,j,k,w} + \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{k=1}^{M} p_{i,j,k}, d_{j}, r + \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{k=1}^{M} r_{i,j,k} \beta + \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{k=1}^{M} s_{i,j,k} (p_{e} + c_{e}) \right)
\]

(1)

تابع هدف، در پی حداصل کردن هزینه‌های است که به ترتیب عبارتند از: هزینه انظاری خرید مواد اولیه، هزینه انظاری حمل و نقل مواد اولیه، هزینه انظاری فرآوری و تولید بیوتانول، هزینه حمل و نقل بیوتانول و در نهایت هزینه تأمین بنزين.

محدودیت‌های مدل
محدودیت‌های مدل مواد اولیه، میزان مواد اولیه مصری انتظاری برای تولید بیوتانول بايد کمتر یا برابر با

\[
\sum_{k=1}^{K} x_{i,h,k,w} \leq \theta_{i,h,w}, \forall i, \forall k, \forall h, \forall w
\]

(2)

محدودیت ظرفیت: میزان تولید بیوتانول نمی‌تواند از ظرفیت تولید بالا‌پیش‌گاه‌ها تجاوز نماید.
جدول ۴: توصیف داده‌ها

در مطالعه حاضر شش نوع مواد اولیه مورد توجه می‌باشد که تماماً شامل ضایعات کشاورزی است. مواد اولیه شامل ضایعات محصولات گندم، جو، برنج، ذرت، نیشکر و چندقرندری می‌باشد که ضایعات نیشکر و چندقرندری با یکدیگر تحت عنوان ملاس گردیده می‌باشد. در ایران ۲۵% از ذرت، ۵۰% از گندم، ۲۰% از جو و ۴% از محصول برنج به صورت ضایعات از دست می‌روند (نجفی، ۲۰۰۹). یازده استان پرمحصول نیز تأمین کننده مواد اولیه خواهد بود که عبارتند از استان‌های خوزستان، فارس، خراسان، خراسان شمالی، گلستان، کرمانشاه، همدان، اردبیل، آذربایجان غربی، کردستان، مازندران و لرستان. سیزده استان
محل برنامه‌ریزی قطعی توسعه طرفیت ...

تولیدکننده بیوانتیول شامل استان‌های خراسان رضوی، فارس، بوشهر، خوزستان، اصفهان، لرستان، ایلام، مرکزی، قم، تهران، قزوین، زنجان و آذربایجان غربی مورد بررسی قرار خواهند گرفت. شکل ۱ محل استقرار استان‌های عرضه کندگان مواد اولیه و پالایش‌گاه‌ها را نشان می‌دهد:

شکل ۱. نقشه محل استقرار پالایشگاهها و عرضه کندگان مواد اولیه

مصرف سوخت همه استان‌های ایران (۳۱ استان) نیز می‌باشد. مواد اولیه و بیوانتیول تولیدی از طریق حمل و نقل جاده‌ای منتقل خواهند شد. شکل ۲ نیز نقاط مصرف سوخت را نشان می‌دهد که با توجه به میزان مصرف، در نقشه زیر به چهار دسته تقسیم شده است:

شکل ۲. نقشه نقاط مصرف سوخت
جدول ۳. ظرفیت سالانه پالایشگاه‌های مورد بررسی را منعکس می‌نماید. پالایشگاه خوزستان بیشترین ظرفیت و پالایشگاه‌های شهرهای هر استان (تال)

<table>
<thead>
<tr>
<th>استان</th>
<th>ظرفیت پالایشگاه</th>
<th>ظرفیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>خراسان‌ضوی</td>
<td>۱۴۴۰</td>
<td>۱۲۰۰</td>
</tr>
<tr>
<td>فارس</td>
<td>۴۸۰</td>
<td>۴۵۶۰</td>
</tr>
<tr>
<td>تهران</td>
<td>۲۴۰۰</td>
<td>۱۲۰۰</td>
</tr>
<tr>
<td>بوشهر</td>
<td>۳۱۲۰</td>
<td>۳۴۸۰</td>
</tr>
<tr>
<td>خوزستان</td>
<td>۱۶۸۰</td>
<td>۳۶۰۰</td>
</tr>
<tr>
<td>اصفهان</td>
<td>۲۳۴۰</td>
<td>۶۰۰۰</td>
</tr>
<tr>
<td>لرستان</td>
<td>۲۳۴۰</td>
<td>۶۰۰۰</td>
</tr>
<tr>
<td>ایلام</td>
<td>۱۴۴۰</td>
<td></td>
</tr>
</tbody>
</table>

منبع: انجمن صنفی تولید کنندگان اتانول ایران و محاسبات پژوهش

برای لحاظ کردن عدم قطعیت در میزان مواد اولیه سه سالی در نظر گرفته شده است، سال برمحصول، سال با محصول متوسط و سال کم محصول. برای دستیابی به توزیع احتمال متغیر احتمالی از روشی آماری بهره برد به است. به این صورت که میزان تولید شش محصول مورد بررسی در یازده استان عرضه کننده طی هشت سال (۱۳۸۶-۱۳۹۳) مورد ارزیابی قرار داده و با طبقه بنی‌کردن میزان محصولات در سه طبقه و استفاده از توزیع فراوانی هر طبقه به توزیع احتمال مشخص برای هر کدام از محصولات مورد بررسی دست یافته‌ایم. همچنین میزان مواد اولیه نسبت به میانگین نیز با استفاده از امید ریاضی و انحراف معیار داده‌ها برای هر طبقه حاصل گردیده است. لازم به تذکر است که در محصول چندنفره و نیشکر گرمای همگی مالس ظاهر می‌گردد. جدول ۳ این احتمالات را منعکس می‌نماید.
جدول 3. احتمالات و میزان مواد اولیه در دسترس نسبت به میانگین تحت هر سناریو

| مواد اولیه | کم محسول | متوسط
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(μ-σ)</td>
<td>(μ)</td>
</tr>
<tr>
<td>ضایعات گندم</td>
<td>0/43</td>
<td>0/14</td>
</tr>
<tr>
<td>ضایعات جو</td>
<td>0/14</td>
<td>0/14</td>
</tr>
<tr>
<td>ضایعات برنج</td>
<td>0/29</td>
<td>0/14</td>
</tr>
<tr>
<td>ضایعات ذرت</td>
<td>0/43</td>
<td>0/14</td>
</tr>
<tr>
<td>ملاس</td>
<td>0/29</td>
<td>0/21</td>
</tr>
</tbody>
</table>

منبع: محاسبات پژوهش

به دلیل گستردهی محصولات مورد بررسی و تعداد پارامترها، در جدول 4، به ارائه تعداد محدودی از پارامترها مهم مدل آکتفا می‌گردد.

جدول 4. خلاصه‌ای از پارامترها

<table>
<thead>
<tr>
<th>واحد</th>
<th>مقدار</th>
<th>ضریب تبدیل ضایعات گندم (Δ(wheat))</th>
<th>ضریب تبدیل ضایعات جو (Δ(barley))</th>
<th>ضریب تبدیل ضایعات برنج (Δ(rice))</th>
<th>ضریب تبدیل ضایعات ذرت (Δ(corn))</th>
<th>ضریب تبدیل ملاس (Δ(molasses))</th>
</tr>
</thead>
<tbody>
<tr>
<td>دوخته</td>
<td>27/2</td>
<td>24</td>
<td>26</td>
<td>28</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>هزینه فرآوری ضایعات گندم (β(wheat))</td>
<td>36/8</td>
<td>35</td>
<td>34</td>
<td>33</td>
<td>32</td>
<td>31</td>
</tr>
<tr>
<td>هزینه فرآوری ضایعات جو (β(barley))</td>
<td>37/5</td>
<td>36</td>
<td>35</td>
<td>34</td>
<td>33</td>
<td>32</td>
</tr>
<tr>
<td>هزینه فرآوری ضایعات برنج (β(rice))</td>
<td>318</td>
<td>317</td>
<td>316</td>
<td>315</td>
<td>314</td>
<td>313</td>
</tr>
<tr>
<td>هزینه فرآوری ضایعات ذرت (β(corn))</td>
<td>495</td>
<td>494</td>
<td>493</td>
<td>492</td>
<td>491</td>
<td>490</td>
</tr>
<tr>
<td>هزینه فرآوری ملاس (β(molasses))</td>
<td>190</td>
<td>189</td>
<td>188</td>
<td>187</td>
<td>186</td>
<td>185</td>
</tr>
<tr>
<td>قیمت ضایعات گندم (Y(wheat))</td>
<td>43</td>
<td>42</td>
<td>41</td>
<td>40</td>
<td>39</td>
<td>38</td>
</tr>
<tr>
<td>قیمت ضایعات جو (Y(barley))</td>
<td>43</td>
<td>42</td>
<td>41</td>
<td>40</td>
<td>39</td>
<td>38</td>
</tr>
<tr>
<td>قیمت ضایعات برنج (Y(rice))</td>
<td>43</td>
<td>42</td>
<td>41</td>
<td>40</td>
<td>39</td>
<td>38</td>
</tr>
</tbody>
</table>
نمایی از تجربی

مدل قطعی پیشنهادی در پژوهش حاضر که شامل ۲۵۴ معادله و ۵۸۰ میلیون بوده‌است در ۳۴ سطر و ۶۰ سال مدل حرفه‌ای مصنوعی سازی تابع هزینه عرضه کننده که شامل ۱۲۰۰ مورد بوده‌است از داده‌های سال ۱۳۹۳، تحت احتیاط بودن مواد اولیه مصرفی، در نرم‌افزار GAMS کدنویسی و حل گردید. ابتدا در جدول ۵ مقایسه‌ای میان میزان و هزینه مصرف فعلي و مصرف بهره‌مند است. در موقع با توجه به محدود بودن توانایی پالایشگاه‌های موجود، این نتایج ۲۴ سال درصد از کل توانایی بنهایترا با اتانول سوختی می‌توان کاپسولی نمود و همین مقدار نیز منجر به صرفه‌جویی در هزینه‌های عرضه کننده به میزان ۱۰۸/۴ میلیارد ریال می‌گردد.

1. Global Agriculture Information Network (GAIN)
2. Suárez
جدول ۵: مقایسه میزان و هزینه مصرف کننده و مصرف بهره‌سازی سوخت

<table>
<thead>
<tr>
<th>مصرف بهره‌سازی</th>
<th>مصرف کننده</th>
</tr>
</thead>
<tbody>
<tr>
<td>پیوندلول</td>
<td>بنزین</td>
</tr>
<tr>
<td>میزان(هزار تن)</td>
<td>۶۸/۴۶</td>
</tr>
<tr>
<td>درصد</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>هزینه(ریال به ازار کیلوگرم)</td>
<td>۲۲۴۴۴/۴۴</td>
</tr>
<tr>
<td>هزینه(میلیارد ریال)</td>
<td>۴۳۲۱۸/۰۱</td>
</tr>
<tr>
<td>مجموع هزینه(میلیارد ریال)</td>
<td>۴۳۲۱۸/۰۱</td>
</tr>
<tr>
<td>میزان صرف جویی(میلیارد ریال)</td>
<td>۶۸/۵۴۲/۳</td>
</tr>
</tbody>
</table>

منبع: محاسبات پژوهش

به دلیل تأخیر در هزینه حمل و نقل و همچنین محدود بودن میزان کاهش هزینه درجه‌بندی که اثبات شده در همین اساسی که تولید می‌گردد به مصرف برسد.

نتایج حاکی از مدل نشان می‌دهد که در شرایط احتمالی بودن میزان مواد اولیه، ناشی از تغییرات در وضعیت جوی، تولیدات با استفاده از ضایعات برزین مقرن به صورت می‌باشد. دلیل این امر قیمت‌پایی ضایعات برزین و ضریب تبدیل بالای این ضایعات بوده به سایر مواد اولیه از یک طرف و محدود بودن آنتی‌ژن‌ها موجب تولید صربها می‌باشد. جدول ۶ نیز سهم مصرف هر پلاسیگاه از مواد اولیه است. هر یک از ضایعات مشخص می‌شود:

جدول ۶. سهم مصرف هر پلاسیگاه از مواد اولیه(ضایعات برزین)

<table>
<thead>
<tr>
<th>استان عرضه کننده</th>
<th>پلاسیگاه</th>
<th>سال بر محصول</th>
<th>سال‌های محصول متوسط</th>
<th>مواد اولیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>خراسان رضوی</td>
<td>خراسان رضوی</td>
<td>۸۰</td>
<td>۴/۷۱</td>
<td>۲/۰</td>
</tr>
<tr>
<td>فارس</td>
<td>فارس</td>
<td>۱/۳۶۲</td>
<td>۳/۶۲</td>
<td>۱/۰</td>
</tr>
<tr>
<td>بوشهر</td>
<td>بوشهر</td>
<td>۹/۵</td>
<td>۹/۵</td>
<td>۰/۰</td>
</tr>
<tr>
<td>خوزستان</td>
<td>خوزستان</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۰/۰</td>
</tr>
<tr>
<td>مازندران</td>
<td>مازندران</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۰/۰</td>
</tr>
<tr>
<td>استان عرضه کننده</td>
<td>میزان بسته‌بندی</td>
<td>اثر بالیشگاه</td>
<td>سالهای محصول</td>
<td>سال کم محصول</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>اصفهان</td>
<td>386/6</td>
<td>1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>لرستان</td>
<td>100</td>
<td>2</td>
<td>مازندران</td>
<td>7/17</td>
</tr>
<tr>
<td>کرمانشاه</td>
<td>100</td>
<td>3</td>
<td>مازندران</td>
<td>2/13</td>
</tr>
<tr>
<td>مرکزی</td>
<td>2/55</td>
<td>0</td>
<td>مازندران</td>
<td>2/8</td>
</tr>
<tr>
<td>اردبیل</td>
<td>4/11</td>
<td>2</td>
<td>مازندران</td>
<td>2/1</td>
</tr>
<tr>
<td>قزوین</td>
<td>5/13</td>
<td>0</td>
<td>مازندران</td>
<td>2/9</td>
</tr>
<tr>
<td>اذربایجان غربی</td>
<td>100</td>
<td>2</td>
<td>مازندران</td>
<td>1/2</td>
</tr>
<tr>
<td>آذربایجان شرقی</td>
<td>100</td>
<td>1</td>
<td>مازندران</td>
<td>5/13</td>
</tr>
</tbody>
</table>

منبع: محاسبات پژوهش
شکل۳. نمودار قیمت‌های سایه‌ای محدودیت‌های طرفیت مدل اولیه

هدف این است که با توجه به قیمت‌های سایه‌ای اقدام به توزیع باقی‌مانده موجود گردد. همان طور که شکل ۳ نشان می‌دهد، توزیع باقی‌مانده فارس، تهران، بوشهر، قم و فرودگاه به سایر باقی‌ماندهها منجر به کاهش هزینه عرضه کننده سوخت می‌شود. بنابراین در مدل پیشنهادی اقدام به افزایش طرفیت این باقی‌ماندهها می‌گردد و این کار تا جایی ادامه می‌یابد که با توجه به قیمت‌های سایه‌ای عرضه سوخت در مدل پیشنهادی اقدام به افزایش طرفیت این باقی‌ماندهها مورد نظر بشی که با توجه به قیمت‌های سایه‌ای عرضه سوخت گردد. بدان ترتیب، توزیع طرفیت در چند گام صورت می‌گیرد و در هر نقطه‌ای که قیمت‌های سایه‌ای توزیع طرفیت باقی‌ماندهها از گام بعد شروع کند گام بعد می‌گردد و این به ترتیب به توزیع طرفیت باقی‌ماندهها مورد نظر می‌گردد. در این مدل بعد از توزیع طرفیت نمودار قیمت‌های سایه‌ای به صورت شکل ۴ می‌گردد:

شکل۴. نمودار قیمت‌های سایه‌ای در گام اول
با توجه به شکل ۶ گام دوم آغاز می‌گردد و در این گام اقدام به توسعه ظرفیت پالایشگاه‌های خراسان رضوی، قم، تهران و قزوین می‌گردد. به همین ترتیب با توجه به الگویی که قیمت‌های سابقه ای پیشنهاد می‌کند اقدام به توسعه ظرفیت پالایشگاه‌ها می‌گردد و تا زمانی که قیمت‌های سابقه مربوط به محدودیت ظرفیت صفر شود این روند ادامه می‌یابد. جدول ۷ میزان افزایش ظرفیت هر پالایشگاه را در هر گام منعکس می‌نماید:

جدول ۷ میزان توسعه ظرفیت هر پالایشگاه در هر گام

<table>
<thead>
<tr>
<th>گام</th>
<th>پالایشگاه</th>
<th>ظرفیت قم</th>
<th>ظرفیت گام</th>
<th>ظرفیت پالایشگاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>فارس</td>
<td>۱۳۰۸۰</td>
<td>۱۳۰۶۰</td>
<td>۹۸۴۰۰</td>
</tr>
<tr>
<td></td>
<td>مرکزی</td>
<td>۲۴۰۸۰</td>
<td>۲۴۰۰۰</td>
<td>۹۸۴۰۰</td>
</tr>
<tr>
<td></td>
<td>بوشهر</td>
<td>۶۲۰۰۰</td>
<td>۶۲۰۰۰</td>
<td>۶۲۰۰۰</td>
</tr>
<tr>
<td></td>
<td>قم</td>
<td>۲۲۳۸۸۸</td>
<td>۲۲۳۸۸۸</td>
<td>۲۲۳۸۸۸</td>
</tr>
<tr>
<td></td>
<td>تهران</td>
<td>۴۵۹۵۸۸</td>
<td>۴۵۹۵۸۸</td>
<td>۴۵۹۵۸۸</td>
</tr>
<tr>
<td></td>
<td>قزوین</td>
<td>۲۴۷۲۰۰</td>
<td>۲۴۷۲۰۰</td>
<td>۲۴۷۲۰۰</td>
</tr>
<tr>
<td></td>
<td>قزوین</td>
<td>۲۵۰۱۸۸</td>
<td>۲۵۰۱۸۸</td>
<td>۲۵۰۱۸۸</td>
</tr>
<tr>
<td></td>
<td>زنجان</td>
<td>۲۸۶۰۰۰</td>
<td>۲۸۶۰۰۰</td>
<td>۲۸۶۰۰۰</td>
</tr>
<tr>
<td>۲</td>
<td>خراسان رضوی</td>
<td>۵۸۴۶۵۰</td>
<td>۵۸۴۶۵۰</td>
<td>۵۸۴۶۵۰</td>
</tr>
<tr>
<td></td>
<td>فارس</td>
<td>۱۲۳۳۱۰۰</td>
<td>۱۲۳۳۱۰۰</td>
<td>۱۲۳۳۱۰۰</td>
</tr>
<tr>
<td></td>
<td>خوزستان</td>
<td>۱۱۴۱۱۱۰</td>
<td>۱۱۴۱۱۱۰</td>
<td>۱۱۴۱۱۱۰</td>
</tr>
<tr>
<td></td>
<td>ایلام</td>
<td>۹۱۳۱۴۱۰</td>
<td>۹۱۳۱۴۱۰</td>
<td>۹۱۳۱۴۱۰</td>
</tr>
<tr>
<td></td>
<td>لرستان</td>
<td>۱۲۲۱۶۱۰۰</td>
<td>۱۲۲۱۶۱۰۰</td>
<td>۱۲۲۱۶۱۰۰</td>
</tr>
<tr>
<td></td>
<td>لرستان</td>
<td>۸۳۴۶۴۱۰۰</td>
<td>۸۳۴۶۴۱۰۰</td>
<td>۸۳۴۶۴۱۰۰</td>
</tr>
<tr>
<td></td>
<td>آذربایجان غربی</td>
<td>۵۸۷۶۷۰۰</td>
<td>۵۸۷۶۷۰۰</td>
<td>۵۸۷۶۷۰۰</td>
</tr>
<tr>
<td></td>
<td>مركزی</td>
<td>۵۲۶۰۰۰۰</td>
<td>۵۲۶۰۰۰۰</td>
<td>۵۲۶۰۰۰۰</td>
</tr>
<tr>
<td></td>
<td>تهران</td>
<td>۳۲۰۰۱۸۸۸</td>
<td>۳۲۰۰۱۸۸۸</td>
<td>۳۲۰۰۱۸۸۸</td>
</tr>
<tr>
<td></td>
<td>قزوین</td>
<td>۲۴۷۲۸۱۲۸</td>
<td>۲۴۷۲۸۱۲۸</td>
<td>۲۴۷۲۸۱۲۸</td>
</tr>
<tr>
<td></td>
<td>آذربایجان غربی</td>
<td>۳۴۶۵۸۸۸۸</td>
<td>۳۴۶۵۸۸۸۸</td>
<td>۳۴۶۵۸۸۸۸</td>
</tr>
<tr>
<td></td>
<td>زنجان</td>
<td>۷۴۹۱۱۱۸۸</td>
<td>۷۴۹۱۱۱۸۸</td>
<td>۷۴۹۱۱۱۸۸</td>
</tr>
</tbody>
</table>

جهانی
به دلیل این که در مدل بیشترین پس از اقامت به توسعه ظرفیت تنها استفاده از ضایعات برنج، میرود ظرفیت تهاجم یا تعداد مصرفگر، به ضایعات طبیعی و مصرف بهبود و سوخت را بعد از اعمال کامل توسعه ظرفیت نشان می‌دهند. همانطور که ملاحظه می‌گردد این بر حسب ۷/۷۳ درصد از بنزین مصرفی با بیوتانول جایگزینی می‌گردد و این امر سبب صرفهجویی در هزینه‌های عرضه کننده سوخت به میزان تقریبی ۶ میلیارد ریال می‌گردد:
جدول 8 مقایسه میزان و هزینه مصرف کونوی و مصرف پهبندی سوخت در آخرین گام

<table>
<thead>
<tr>
<th>مصرف بهنیه</th>
<th>مصرف کونوی</th>
<th>بیوناول</th>
<th>بنزين</th>
<th>بنزين</th>
</tr>
</thead>
<tbody>
<tr>
<td>میزان (هزار تن)</td>
<td>1800/5/20</td>
<td>1390/7/25</td>
<td>1290/4/83</td>
<td></td>
</tr>
<tr>
<td>درصد</td>
<td>100</td>
<td>90/87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>هزینه (ریال به اراى کیلوگرم)</td>
<td>2544/44</td>
<td>2544/44/24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>هزینه کل (میلیارد تومان)</td>
<td>2321/8/14</td>
<td>2321/8/14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>مجموع هزینه (میلیارد تومان)</td>
<td>8572/66</td>
<td>8572/66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>میزان صرفه جویی (میلیارد تومان)</td>
<td>1947/1</td>
<td>1947/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

منبع: محاسبات پژوهش

شکل 5 میزان صرفه جویی در هزینه های عرضه کننده ناشی از مصرف در هر گام در مقایسه با مصرف

در حل اولیه مدل را نشان می‌دهد:

شکل 5 نمودار مقایسه صرفه جویی در هزینه ناشی از مصرف در هر گام در مقایسه با مصرف در حل اولیه
جدول ۹ سهم استفاده پالایشگاه‌ها از کل ظرفیت‌ها (درصد)

<table>
<thead>
<tr>
<th>استان</th>
<th>سهم پالایشگاه</th>
<th>سهم پالایشگاه</th>
<th>خراسان رضوی</th>
<th>اصفهان</th>
<th>فارس</th>
<th>بوشهر</th>
<th>خوزستان</th>
<th>مرکزی</th>
<th>کرمان</th>
<th>اصفهان</th>
<th>خراسان</th>
<th>اصفهان</th>
</tr>
</thead>
<tbody>
<tr>
<td>تهران</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۵۷/۲</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۰</td>
<td>۱۰۰</td>
<td>۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>قزوین</td>
<td>۰</td>
</tr>
<tr>
<td>خوزستان</td>
<td>۴/۸</td>
<td>۴/۸</td>
<td>۰</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

مطلب: یافته‌های پژوهش

از آن که تنها امکان گاجکینی ۱۰% از بنزین مصرفی با اتانول سوختی وجود دارد، در حالتی
که توزیع ظرفیت اعمال می‌گردد، هر پالایشگاه پس از گاجکینی ۱۰ درصد اسکارود سوخت استان محل
اسکارونی اتانول تولیدی را به سایر استان‌ها همچون صادر می‌نماید. شکل ۵ نقشه نحوه توزیع
اتانول سوختی بین استان‌ها را به نمایش می‌گذارد.
شکل ۵. نقشه توزیع اتاتول بین استان‌های کشور

۶. نتیجه‌گیری

تجدیدناپذیری سوخت‌های فسیلی، توسعه پایدار، متنوع ساخت، منابع انسانی برای ایجاد امنیت انرژی و مسائل زیست‌محیطی همگی موجب توجه به منابع انرژی تجدیدپذیری از جمله زیست‌توده گردیده است. امروزه فعالیت و بودجه دولت‌ها در امر تحقیق و توسعه و ایجاد سیستم‌های انرژی تجدیدپذیر بسیار افزایش یافته است. در این میان در کشورهایی در حال توسعه مانند ایران این مسئله کمتر مورد اقبال قرار گرفته است. نظر به افزایش تقاضای حامل‌های انرژی و محدودیت تأمین سوخت خودروها از یک سو و روند فزایند نشر آلاینده‌ها از سویی دیگر، پژوهش حاضر به بررسی اولویت توسعه طرفیت پالایشگاه‌های موجود بیوانتانول در ایران پرداخته است. نتایج حاکی از آن است که:

۱. تنها ۲۳۶/۰ درصد از سوخت مصرفی را می‌توان با اتانول جایگزین نمود و همین میزان نیز منجر به صرفه‌جویی در هزینه‌های عرضه کننده سوخت به میزان ۱۰۸۴ میلیارد ریال در سال می‌گردد.
۲. بررسی اولیه‌های توزیع ظرفیت حاکی از آن است که از بین سیستم اسناد تولیدکننده بیوانتال در این پژوهش، ابتدا توزیع ظرفیت همه پالایشگاه‌های مورد بررسی موضوعیت خواهد داشت. چهار پالایشگاه بوشهر، اصفهان، قم و قزوین از جهت بهره برداری اقتصادی در اولیه قرار نمی‌گردند.

۳. همچنین این نتیجه حاصل شد که توزیع ظرفیت پالایشگاه‌ها طبق اولیه نشان داده شده در قیمت‌های سابقه، منجر به چاپگذاری ۷/۱۳ درصد اندازه به چاپ بین‌می‌گردد. در واقع، محصولات ضایعات برقی، حرارت و گندم موجود، که در پژوهش حاشیه‌های تولیدی بیوانتال هستند منجر به توقف توزیع ظرفیت پالایشگاه‌ها می‌گردد. آمای مقدار افزایش تولید نیز موجب صرفه جویی در هزینه وضعیت به میزان تقریبی ۶ میلیارد ریال به طور سالانه می‌گردد. همان طور که نتایج پژوهش نشان می‌دهد در شرایط فعلی و ظرفیت سپار کم و ناچیز پالایشگاه‌های موجود، وضعیت اندازه در مقایسه با پیشین برای نازجی است. اما استفاده از زیست‌توده به عنوان یک منبع انرژی به دلیل توزیع اقتصادی و مسائل زیست‌محیطی چالاک است و از طرفی به عنوان یک عامل در تسهیل رسیدن به توزیع باپات در آن یاد می‌شود. لذا توجه جدی‌تر به این منبع انرژی و ایجاد جاذبه‌ی در زمینه سرمایه‌گذاری برای تولید این سوخت‌زیستی به سیاست‌های مناسب توصیه می‌گردد.

منابع

۱. آقایان،حسین. (۱۳۹۳). آمار نامه مصرف فرآورده‌های نفتی انرژی زا-۱۳۹۲. روابط عملی شرکت ملی پخش فرآورده‌های نفتی ایران، تهران.
۲. سوخکان، محمدعلی. (۱۳۷۷). برنامه‌ریزی و تجزیه تحلیل تصمیم‌گیری‌های صنعتی. موسسه انتشارات جهاد دانشگاهی.
۴. عناوی فرامرز.ماهتی،سمیه،کامران،عابدی،زهرا. (۱۳۹۱). "برآورد صرفه‌جویی اقتصادی ناشی از کاهش خسارات وارد بر سلامت حاصل از احداث یک چایگاه سوخت‌زیستی CNG در مقایسه با بنزین در شهر تهران." علوم و تکنولوژی محیط زیست. ۵۱-۵۹.
[۵] کوشش‌های وزارت اقتصاد و امور اقتصادی و تعاون، وزارت کشاورزی، وزارت صنعت، توانمندیهای صنعتی، نیروگاه‌های انتقالی و دفترناهای اقتصادی تا دو سال پیش، کاهش قدرت و مدیریت منابع طبیعی. سازمان انتشارات جهاد دانشگاهی.

[۶] احمدی، کریم؛ قلی‌زاده، حسین‌الله؛ حمیدرضا، حسین‌پور، ریازه؛ حانوی، فرشاد؛ فضلی، بهروز؛ کاظمی‌پور، آژو و میرمی‌فری، (۱۳۹۴) آمار نامه کشاورزی سال زراعی ۹۳-۱۳۹۴ جلد اول: محصولات زراعی. تهران.


