چکیده
هدف این مقاله، تعيين مدل برای توسعه ظرفیت بالايشگاهي توپيری بیواناتول ايران است. به دليل متغير بودن وضعیت آب و هوایی، در ميزان موارد اولیه ناطمینات وجود دارد، بنابراین یک مدل برنامه‌ریزی قطعی برای با توجه به تيعیین می‌شود. مدل برنامه‌ریزی قطعی خطي برای یک دوره و در چارچوب حداکثر سازي هزینه‌های عرضه کننده سوخت ارانه گردیده است. مدل که ایمن توضیح برای توسعه ظرفیت بالايشگاهي مورد بررسی ارائه می‌دهد در واقع به گونه‌ای است که هزینه‌های ناشی از عرضه سوخت (بنزین و اتانول سوختی) توسط عرضه کننده را به حداکثر می‌رساند. نتایج حاکی از آن است که توسعه ظرفیت بالايشگاهي مورد بررسی منجر به کاهش هزینه‌های عرضه کننده سوخت به ميزان تقریبی 6 میلیارد ریال می‌گردد.

کلمات کلیدی:
سوخت زیستی
اثاثول زیستی
مدل برنامه‌ریزی قطعی
پیشنهاد

دریافت تاریخ: ۱۳۹۶/۵/۲۱
دریافت پذیرش: ۱۳۹۶/۱۱/۱۷

Student_economic@yahoo.com
asharifi@istt.org
babak.saffari@gmail.com

1. کارشناس ارشد توسعه اقتصادی و برنامه‌ریزی (توبینده مستول)
2. دانشیار دانشگاه علم اداری و اقتصاد دانشگاه اصفهان
3. استاد دانشگاه علم اداری و اقتصاد دانشگاه اصفهان
1. مقدمه

از دیپوزیت انرژی در زندگی بشر نقش مهمی ایفا می‌نموده و نجوه تامین انرژی به صورتی که ارزان‌تر، ایمن‌تر و توانمندتر باشد برای توسعه اقتصادی و بهبود زندگی امروزی شایان توهم بوده است. با این حال همچنان بخش عمیقی از انرژی مورد نیاز جهان از طریق سوخت‌های فسیلی تأمین می‌گردد که به دلیل تجدیدپذیری و محدود بودن این منابع سوختی و نیاز مشکلات زیست‌محیطی ناشی از مصرف آنها توسعه اقتصادی جوامع بشری در سال‌های آینده به مشکلات جدی روی می‌گردد. استفاده از سوخت‌های زیستی به عنوان یک چنین مناسب برای سوخت‌های فسیلی چه از منظر اقتصادی و چه از منظر زیست‌محیطی مورد توجه است. به سوخت‌های حاصل از مواد آلی گیاهان مانند زیست‌توانده شامل منابع اولیهای همچون گیاه و همچنین سوخت‌های اشتقاقی مانند اتانول، پتال و بیوگاز، سوخت‌های زیستی می‌گویند (اسلسر؛ 1989؛ 24). اتانول نیز نوعی سوخت است که اگر از زیست‌توانده توپلی‌گردد، بیوپتال خوانده می‌شود. در واقع بیوپتال نام سیستمیک اتانول تیلیک (C2H5OH) می‌باشد که مایعی قابل اشتعال، فار و پودر است و جدا از ارزشی آن به عنوان حلال و ماده خام در بسیاری از فرآیندهای شیمیایی ممکن است به عنوان سوخت برای احتراق موتوورها به تنهایی و یا به صورت مخلوط با زیست‌نتیج استفاده شود (اسلسر؛ 1989؛ 198). نیروهای محور اقتصادی اصلی برای توسعه بودپزی و بیوپتال درآسیا، امروزه انرژی، بهبود تراز تجارت و گسترش بخش کشاورزی است (زروودگرمان؛ 1998). در ایالات مختلف سوخت‌های نفتی و افرازی به توسط محیطی در دهه 1970 و طرح سیاست‌های دولتی در برای کاهش وابستگی ایالات متحده به سوخت‌های فسیلی – خصوصاً نفت خارجی – موجب رشد صنایع اتانول گردید (سوتی ریت، 2000؛ 3). و بازار اتانول که در سال 1975 کمتر از یک میلیارد لیتر تولید می‌کرد در سال 2006 به رشد بیش از ۳۲ میلیارد لیتر رسید (لیچ، 2005) ایالات متحده آمریکا و برزای با یکدیگر حدود ۹۰ درصد از تولید سوخت زیستی را به خود اختصاص داده‌اند. در سال 2006 ۲۰ ایالات متحده آمریکا ۱۸ میلیارد لیتر (۶۴ درصد از تولید کل

1. Zhou
2. Soetaert
3. Licht
جهان) و برزیل ۱۶ میلیارد لیتر انمول (۴۴ درصد از کل تولید جهانی) را تولید کردند (گیامپیترو و دیگران، ۱۷۸۸). برزیل نیز بیش از ۳۰ سال است که از انمول در مقیاس و سیاست برای سوخت اتومبیل‌ها استفاده می‌کند و در سال ۲۰۰۴، ۲۰۰۴ تولیدگان بزرگ جهان (ایالات متحده در سال ۲۰۰۶ پیشگام بود) و تیترا کشوری است که سوخت زیستی در آن به شدت با مشتقات نفتی رقابت می‌کند (سیمنات، ۲۰۰۹). در کشورهای امریکا و کانادا، بیوتانول به صورت ترکیب ۱۰٪ با بنزین کاربرد دارد که این مقدار نیاز به تغییر موتور اتومبیل‌ها ندارد (لورن، ۲۰۱۰).

بیوتانول، معمولی ترین سوخت زیستی در جهان، به خصوص در برزیل است. برزیل بزرگترین صادرکننده انمول زیستی در جهان محسوب می‌شود که تولید آن با استفاده از نیشکر صورت می‌گردد. فرایند تولید در ایالات متحده امریکا اساساً بر غلات مبتنی بوده و در اتحادیه اروپا نیز منببی بر ترکیبی از حیوانات و در مقیاس کمتر با استفاده از چغندر صورت می‌پذیرد. آرژانتین و برخی از کشورهای در حال توسعه (به عناوین مانند اندونزی، پاکستان و آفریقای جنوبی) نیز صادرکننگان مهم انمول محسوب می‌گردند. در این میان برزیل و ایالات متحده امریکا دو مصرف کننده بزرگ انمول زیستی بوده و هرکدام از این کشورها از تاریخچه طولانی در مصرف انمول زیستی برخوردار می‌باشند (کوشن و دیگران، ۱۸۸۹).

در ایران نیز میزان تولید ضایعات کشوارزی بسیار بالاست و روش برجوری فرین با این ضایعات، اقتصادی بودن تولیدات کشوارزی را در بلندمدت مورد تردید قرار می‌دهد. از طرفی بیوتانول یک می‌توان از مسئله‌های کشوارزی استحصال نمود. بیشتر حاضر به دنبال ارائه مدلی برای توسعه ظرفیت بالا استجاوهای تولید بیوتانول در ایران با محوریت استفاده از انرژی خورشیدی و مقاوم برخی از زانودهای کشوارزی است و در این مسیر از تکنیک بیوتانولی ریزی، اقلیمی از این‌جمله احتمال استرای تیپ‌های اکتیو توسعه ظرفیت استفاده می‌کند. هدف تصمیم‌گیری راجع به توسعه ظرفیت بالا استجاوهای تولید بیوتانول ایران به منظور کاهش هزینه‌های عرضه کننده سوختی است که قصد دارد به‌خیص از بنزین را با بیوتانول

1. Giampietro

۲. نگاه به موضوع از دیدگاه یک برنامه‌ریز اجتماعی (Social Planner) است، در واقع منظور یک عرضه کننده جمعی است که در مورد عرضه سوخت تصمیم گیری می‌کند.
جاگزین نماید. هدف مورد نظر یک مدل برنامه‌ریزی قطعی برای حداکثر کردن هزینه‌های تک دورهای تأمین سوخت تحت یکسری قیود دنبال می‌گردد. در این گونه از تصمیم‌گیری‌ها، هنگام انتخاب جواب به میزان مجموعه امکان‌زدیر، داده‌های مستقل به‌هم‌سازی از قبل تیمین شده هستند.

(صفر، ۱۳۸۱). در ادامه مبانی نظری بیان می‌گردد و بخش سوم به روش تحقیق اختصاص دارد.

توجه داشته باشید، تجربیات به‌نتیجه در بخش چهار و بخش‌های مورد بررسی قرار گرفته، نهایتاً در قسمت ششم جمع‌بندی صورت می‌گیرد.

۲. مبانی نظری

هم اکنون در کشور، ماهه ام‌تی‌بی‌ئی (می‌توان یکی از عوامل نام‌گذاری اکسیژنده به بنزین افزوده می‌شود. سردرد، سرگیجه، تهوع، آلرژی، و مشکلات تنفسی از مهم‌ترین و شایع‌ترین عوارض این ماده سرطان‌زا در انسان است. امپیریا در آب بسیار محلول است و بس از انرژی، با سرعتی بیش از سایر ترکیبات بنزین در خاک حرفه می‌کند. این ماده در سطوح کم موجب تغیر طعم و بوی آب آشامیدنی می‌گردد و بیش از سایر اجزای بنزین نسبت به تجزیه بیولوژیکی پایدار است. مطالعات نشان می‌دهد که این ماده به سرعت در سطح آب پراکنده می‌گردد و تبخیر آن از سطوح آب چندین هفته به دراز می‌کشد (نیمی ۲ و دیگران؛ ۲۰۰۲). در حالی که با جایگزین کردن اتانول به عنوان عامل اکسیژن‌دهنده از میزان آلایندگی خورده‌های بنزین سوز کاسته می‌شود. در داخل کشور مطالعه میدانی جدی در زمینه تولید و گسترش صنایع تولید اتانول سوخت نگرفته است. پژوهش حاضر نیز درصد انجام به‌هم‌سازی برای انتخاب مکان و میزان به‌هم‌سازی و اقتصادی توسعه ظرفیت پلاستیک‌های تولید بیوتانول ایران از طریق حداکثر سوخت‌های عرضه‌کننده سوخت، می‌باشد. در ادامه اقدام به

متغیری چند مطالعه در زمینه توسعه ظرفیت پلاستیک‌های اتانول می‌گردد:

1. MTBE (Methyl Tertiary Butyl Ether)
2. Nadim
پارکر و همکاران (2010) در مقاله‌ای تحت عنوان "توسعه بهینه منحنی عرضه پالایشگاه‌ی بهینه زیستی" یک مدل بهینه‌یابی برای تعیین مکان پالایشگاه زیستی گسترش‌می‌دهند. این همکاران پتانسیل عرضه سوخت زیستی در جنوب ایالات متحده از زیست توده کشاورزی، چنگلی و شهری را مورد ارزیابی قرار می‌دهند و اطلاعاتی همچون متابع مواد اولیه، موقعیت فعلی پالایشگاه‌ها و شبکه حمل و نقل را در یک مدل بهینه‌یابی عدیدصلاحیت مختلط به کار می‌گیرند. در این کار، موقعیت بهینه، نوع و اندازه تکنولوژی پالایشگاه زیستی با اعمال تابع هدف حداکثرسازی برد برای زنجیره عرضه و تقاضای سوخت زیستی ارائه می‌گردد. همچنین تحلیل حساسیتی به منظور کشف امکان‌پذیر بودن اعمال سیاست و تغییر در تکنولوژی انجام می‌دهند. نتایج این پژوهش نشان می‌دهد که چای‌گزینی ۱۵٪ از تقاضای سوخت مابع حمل و نقل منطقه امکان‌پذیر می‌باشد.

لدوکا و همکاران (2010) در مقاله‌ای تحت عنوان "موده زیستی پالایشگاه زیستی اتانول لیگنولوژی چند نسلی در سوند" یک مدل تولید انرژی برای تولید اتانول ارائه می‌دهند. موقعیت جغرافیایی پالایشگاه نسبت به محل زیست توده و حمل و نقل سوخت و حرات اهمیت دارد. بنابراین آن‌اکن مدل بهینه‌یابی برای تعیین مکان بهینه این پالایشگاه‌ها منظر دارند. و پارامترهای ورودی برای بررسی تاثیر این پارامترها بر هزینه بهینه تولید اتانول و موقعیت بهینه پالایشگاه مورد مطالعه قرار می‌دهند. نتایج این پژوهش نشان می‌دهد که نقص هزینه زیست توده و در دسترس بودن آن برای تعیین موقعیت پالایشگاه و رقابت‌ذیر بودن اتانول تولیدی با اتانول ارداختم بسیار مهم است. همچنین پیشنهاد تولید اتانول در سوند و تغییر مکان پالایشگاه‌ها را می‌دهد.

چنگیز و همکاران (2014) نیز در مقاله "مدل هزینه برای تولید سوخت زیستی مبتینی بر مواد اولیه چنگلی و کاربرد آن در تعیین اندازه بهینه تأسیسات" با اشاره به نگرانی‌ها راجع به کاربرد سوخت‌های فسیلی و امنیت انرژی و افزایش سهم سوخت‌های زیستی در تأمین تغذیه، یک مدل ریاضی برای توصیف هزینه کل سالانه تأسیسات سوخت زیستی مبتینی بر زیست توده چنگلی را برای ایالات میشیگان

1. Parker
2. Leduc
3. Jenkins
توضیحات می‌دهند. این مدل شامل مدت بردارت، منابع جنگل و جمع‌آوری، حمل و نقل، نقل و انتقال، ساخت تأسیسات و هزینه‌های عملیاتی است. آنان از عوامل مختلف را بر اثرات تأسیسات و هزینه‌های واحدهای مختلفی مورد مطالعه قرار می‌دهند. نتایج نشان می‌دهد که نرخ هزینه‌های حمل و نقل بر اثرات و هزینه‌های خصوصی مؤثر است.

رودریگز گانزالترا و دیگران (۱۴۰۳) در مقاله خود با عنوان "پیشنهادی تصادفی برای برنامه‌ریزی استراتژیک نجات نام اپلیگهای زیستی: مدل‌های مقياس بزرگ" برنامه‌ریزی استراتژیک نجات نام اپلیگهای زیستی را با استفاده از یک مدل برنامه‌ریزی عمد مختلط تصادفی دو مرحله‌ای فرموله نمودند که در آن عدم قطعیت تلاش‌های محصول و دسترسی به مواد خام را در نظر گرفته‌اند. مطالعه موردی آنان منطقه‌ای در جنوب شرقی ایالات متحده آمریکا است. مسئله پیشنهادی آن‌ها در مقایسه پزشکان نجات‌کننده‌ها که شمار تعداد زیادی محدودیت و متغیر تصادفی و بسیاری از صد پارامتر می‌باشد. نتایج نشان داده که بیشترین سود اقتصادی بلکه مناسب‌ترین سیستم تولید محل و ظرفیت بهینه تولید از مکانات موجود برای پالایشگاه‌ها را نشان می‌دهد.

۳. روش تحقیق

پیشنهادی، فراهم‌آوری و تحلیل و ارائه راه‌حل برای مسائلی است که در آن‌ها یک انتخاب از میان دامنه‌ای از انتخاب‌ها صورت می‌گیرد. انتخاب‌های امکان‌پذیر به عنوان عناصر مجموعه‌ای که به آن مجموعه امکان‌پذیر گفته می‌شود در نظر گرفته شده و هدف یافتن بهترین انتخاب (که لزوماً متحمل به فرد نمی‌باشد) و یا حداکثر انتخاب یک گزینه بهتر نسبت به سایر گزینه‌ها است. انتخاب‌ها با استفاده از توصیف یک تابع که تابع هدف نامیده می‌شود، یا یک‌گی‌گر مقایسه می‌گردد. پیشنهادی می‌تواند به صورت گسترش و پیوسته صورت پذیرد که در حالی که در حالت گسترش تعداد زیادی از گزینه‌ها با یک‌گی‌گر مقایسه شده‌اند این تعداد محدود است. در حالی که در حالی که در حالت پیوسته انتخاب‌ها در قابل متغیرهای حیاتی قابل توصیف است و مجموعه امکان‌پذیر زیرمجموعه‌ای از مقیاسیشن Rn است (روکافار، ۲۰۰۱: ۲). برنامه‌ریزی قطعی، گونه‌ای از مدل‌های برنامه‌ریزی است، که در آن داده‌های مستقل به‌پیش‌سازی از پیش تعیین شده.

1. Rodriguez-Gonzalez
اند. در واقع در این گونه مدل‌ها متغیر وضعیت سیستم از قطعیت بروخوردارند و در مورد شکل گیری آنها به عنوان داده‌های مستقله هیچ‌گونه تریبدی وجود ندارد (روکافرلر، 2001:34). از آن جا که به دلیل متغیر بودن شرایط جوی در مورد میزان مواد اولیه ناطئسی و وجود دارد بنابراین مدل برنامه‌ریزی قطعی برای احتمالات پیشنهادی می‌گردد. در این روش از سناریو ی پره برده می‌شود. در واقع سناریوها همان حالت‌های ممکن یک متغیر احتمالی هستند که با احتمال‌های مختلف امکان وقوع خواهند داشت (شاپیرو، 1990). احتمال عبارت است از معیار کمی "شانس" و "امکان" این که یک واقعه معین اتفاق پیاند (سومایی، 2002).

چهار مجموعه در این پژوهش از اهمیت بیشتری برخوردار می‌باشند: مجموعه مربوط به اطمینان مواد اولیه، مجموعه استان‌های عرضه کننده مواد اولیه، مجموعه بالایشگاه‌های تولید بیوانتانول و مجموعه استان‌های مصرف کننده بیوانتانول. همانطور که جدول 1 نشان می‌دهد در فرآیند تولید بیوانتانول انتخابه k می‌باشد. همان‌طور که جدول 1 نشان می‌دهد در فرآیند تولید بیوانتانول انتخابه k و c می‌باشد. به ترتیب نماد سناریوها و احتمال هر سناریو می‌باشد. جدول 1 فهرست علائم و اختصاصات به کار برده شده در پژوهش حاضر را نشان می‌دهد:

1. Scenarios
جدول 1. فهرست علائم و اختصارات

<table>
<thead>
<tr>
<th>پارامترها</th>
<th>شاخص (زیر نویس)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_{ih}</td>
<td>I=1,2,3, ..., k</td>
</tr>
<tr>
<td>h لرای بالایشگاه</td>
<td>k بالایشگاهها ...</td>
</tr>
<tr>
<td>k بالایشگاهها</td>
<td>c مرکز توزیع</td>
</tr>
<tr>
<td>Δi ضریب تبدیل تولید نهایی بیواناتول در بالایشگاه</td>
<td>c=1,2,3, ...</td>
</tr>
<tr>
<td>i قیمت هر واحد مواد اولیه از منبع</td>
<td>h=1,2,3, ...</td>
</tr>
<tr>
<td>ی هزینه حمل و نقل هر واحد مواد اولیه</td>
<td>a استان عرضه کننده مواد اولیه</td>
</tr>
<tr>
<td>ی هزینه حمل و نقل هر واحد محصول نهایی از بالایشگاه</td>
<td>نمایندگی تعیین</td>
</tr>
<tr>
<td>د_i سیف میزان عرضه بیواناتول بالایشگاه</td>
<td>k بالایشگاهها</td>
</tr>
<tr>
<td>c به شکل</td>
<td>نمایندگی تعیین</td>
</tr>
<tr>
<td>د_i سیف میزان عرضه به نهایی جهت تأمین نیاز</td>
<td>c موارد توزیع</td>
</tr>
<tr>
<td>h سیف مواد اولیه عرضه شده</td>
<td>h=1,2,3, ...</td>
</tr>
<tr>
<td>k بالایشگاه</td>
<td>w سیف بالایشگاه در سئاری</td>
</tr>
<tr>
<td>c سیف بالایشگاه</td>
<td>نمایندگی تعیین</td>
</tr>
<tr>
<td>D سیف تناها</td>
<td>متغیرهای تصادفی</td>
</tr>
<tr>
<td>β سیف نرخ تبدیل هرکدی از نهاییه و تبدیل آن به بیواناتول</td>
<td>پین سیف تصادفی از هر متغیر تصادفی</td>
</tr>
<tr>
<td>Pe هزینه تولید هر واحد بنزین</td>
<td>لمین سیف تصادفی از هر متغیر تصادفی</td>
</tr>
<tr>
<td>e هزینه خارجی ناشی از مصرف هر واحد بنزین</td>
<td>لمین سیف تصادفی از هر متغیر تصادفی</td>
</tr>
</tbody>
</table>

مقدمه

زیست‌توان مورد نیاز از استان عرضه‌کننده مواد اولیه به بالایشگاه مورد نظر حمل می‌گردد. سپس فرآیند تولید صورت می‌پذیرد و در نهایت بیواناتول تولیدی جهت عرضه به استان‌های مصرف کننده حمل می‌شود. میزان مواد اولیه، با توزیع احتمال مشخص می‌باشد. تابع هدف مسئله، حداکثر سازی هزینه عرضه‌کننده سوخت می‌باشد که قصد دارد بخشی از بنزین مصرفی را با بیواناتول سوختی جایگزین کند. در این راستا متغیرهای تعیین عبارتند از: ۱- میزان مواد اولیه مصرفی، ۲- میزان بیواناتول عرضه شده و ۳- میزان بنزین عرضه شده.
برای حل و بررسی یک مسأله بهینه‌سازی، در ابتدا باید این‌گونه مدل کردن به این معمی است که مسأله را با متغیرها و روابط ریاضی توصیف گردیده، به طوری که مسأله بهینه‌سازی را جعل نماید.

لازم به تذکر است که منظور از پالایشگاه در پژوهش حاضر، پالایشگاه تولید اندازه‌ی زیستی

می‌باشد. همچنین در طریقی مدل‌های پژوهش حاضر فروض زیر در نظر گرفته شده است:

1. تکنولوژی تبدیل ضایعت مختلف به اندازه در پالایشگاه‌های مختلف یکسان است.
2. هزینه طرح‌هایی، در پالایشگاه‌های مختلف برابر است.
3. به دلیل عدم دسترسی به هزینه‌های پالایشگاه‌های مختلف، تابع هزینه با فرض ثابت بودن هزینه

نهایی پالایشگاه‌ها به فرم خطي در نظر گرفته شده است.

تاف هدف

با فرض اینکه دلیل متغیر بودن شرایط آب و هواپی، میزان مواد اولیه موجود برای تولید بیوتانول

احتمالی است، مدلی قطعی بر پایه احتمالات پیشنهاد می‌گردد. تابع هدف و محدودیت‌ها برای مدل

پیشنهادی به صورت زیر تعریف می‌شوند:

\[
\begin{align*}
\text{Min} & \sum_{i=1}^{J} \sum_{k=1}^{K} \sum_{w=1}^{W} \left(\frac{1}{\sum_{i=1}^{J} \sum_{k=1}^{K} \sum_{w=1}^{W} \rho_{i,k,w} d_{i,k,w} } + \sum_{i=1}^{J} \sum_{k=1}^{K} \sum_{w=1}^{W} \rho_{i,k,w} d_{i,k,w} r + \sum_{i=1}^{J} \sum_{k=1}^{K} \sum_{w=1}^{W} \rho_{i,k,w} \beta_{i,k,w} r + \sum_{i=1}^{J} \sum_{k=1}^{K} \sum_{w=1}^{W} \rho_{i,k,w} \#(pe+cc) \right) \\
\text{Subject to} & \sum_{k=1}^{K} x_{i,h,k,w} \leq \theta_{i,h,w} , \forall i, \forall k, \forall h, \forall w
\end{align*}
\]

محدودیتهای مدل

محدودیت‌های مدل میزان مواد اولیه مصرفی انظاری برای تولید بیوتانول باشد که در ضمن

میزان مواد اولیه در دسترس انتظاری باشد.

\[
\sum_{k=1}^{K} x_{i,h,k,w} \leq \theta_{i,h,w} , \forall i, \forall k, \forall h, \forall w
\]
 محصول‌بندی مواد دوهم و سوم از مواد ربع‌فاسی انظاری با یک نسبت مشخصی به محصول نهایی تبدیل می‌گردد.

\[\sum_{c=1}^{C} s_{k,c} \leq \varphi_k \]

(3)

محصول‌بندی ترکیب اتانول سوختی: همان طور که اشاره گردید، با ترکیب حداقل ۱۰ درصد اتانول با بنزین، موتور اتومبیل نیاز به تعیین نخواهد داشت. بنابراین محصول‌بندی (۲-۵) گویای محصول‌بندی در ترکیب اتانول با بنزین می‌باشد.

\[\sum_{k=1}^{K} s(k,c) \leq 0.1D_c \]

(5)

محصول‌بندی توان این فروش و تفاوتی: برایی عرضه و تقاضای سوخت و شتر تعادل بار می‌باشد.

\[\left(\sum_{k=1}^{K} s_{k,c} \right) + se_c = D_c, \forall k, \forall c \]

(6)

محصول‌بندی نامناسب بوادی متغیرهای تصمیم: در نهایت این محصول‌بندی نشان می‌دهد که همه متغیرهای تصمیم نامناسب هستند.

\[x_{i,h,k,w}, s_{k,c}, se_c \geq 0, \forall i, \forall k, \forall h, \forall c, \forall w \]

(7)

4. توصیف داده‌ها

در مطالعه حاضر شش نوع مواد اولیه مورد توجه می‌باشد که تماماً شامل ضایعات کشاورزی است. مواد اولیه شامل ضایعات محصولات گندم، جو، برنج، ذرت، نیشکر و چندانفند می‌باشد که ضایعات نیشکر و چندانفند با یکدیگر تحت عنوان مالس ظاهر می‌گردند. در ایران ۲۵٪ از ذرت، ۵۰٪ از گندم و ۴۰٪ از چندانفند می‌باشد که بطور مالس به صورت ضایعات از دست می‌روند (نجفی، ۲۰۰۹). یازده استان برمحصول نیز نامناسب کننده مواد اولیه خواهد بود که عبارتند از استان‌های خوزستان، فارس، خراسان رضوی، گلستان، کرمانشاه، همدان، اردبیل، آذربایجان غربی، کردستان، مازندران و یزد. سیزده استان
تولید گندنده بیوانتال شامل استان‌های خراسان رضوی، فارس، بوشهر، خوزستان، اصفهان، لرستان، ایلام، مازندران، قزوین، اذربایجان غربی مورد بررسی قرار گرفت. محل استقرار استان‌های عرضه گندنده مواد اولیه و پالایشگاه‌ها را نشان می‌دهد:

شکل 1. نقشه محل استقرار بی‌اثرگاه‌ها و عرضه گندنگان مواد اولیه مصرف سوخت همه استان‌های ایران (31 استان) نیز مقدار می‌باشد. مواد اولیه و بیوانتال تولیدی از طریق حمل و نقل جاده‌ای منتقل خواهد شد. شکل 2 نشان می‌دهد که با توجه به میزان مصرف، در نقشه زیر به چهار دسته تقسیم شده است:

شکل 2. نقشه نقاط مصرف سوخت
جدول ۲. ظرفیت سالانه پالایشگاه‌های مورد بررسی را معکس می‌نماید. پالایشگاه خوزستان بیشترین ظرفیت و پالایشگاه قم کمترین ظرفیت را به خود اختصاص داده‌اند:

جدول ۲. ظرفیت سالانه پالایشگاه‌های هر استان (تن)

| ظرفیت | خوزستان | قم | فارس | یزد | بوشهر | خیپا | استان‌های غربی | لرستان | ایلام | آذربایجان غربی | پنجاهم | کردستان | تربیت و آموزش | خراسان | مرکزی | تهران | قزوین | اصفهان | گیلان | البرز | ایلام | گلستان | سمنان | همدان | تربیت و آموزش | خراسان | قم | فارس | یزد | بوشهر | خیپا | استان‌های غربی | لرستان | ایلام | آذربایجان غربی | پنجاهم | کردستان |
|-------|-----------|-----|------|------|-------|-----|---------------|--------|-------|---------------|---------|-----------|----------------|--------|------|-------|------|-------|------|-------------|--------|-------|---------------|---------|-----------|----------------|--------|------|-------|------|-------|------|-------------|--------|-------|---------------|---------|-----------|
| ۱۴۴۰ | ۱۲۰۰ | ۴۵۶۰| ۱۲۰۰ | ۴۵۶۰| ۱۲۰۰ | ۴۵۶۰| ۱۲۰۰ | ۴۵۶۰ | ۱۲۰۰ | ۴۵۶۰ | ۱۲۰۰ | ۴۵۶۰ | ۱۲۰۰ | ۴۵۶۰ | ۱۲۰۰ | ۴۵۶۰| ۱۲۰۰ | ۴۵۶۰ | ۱۲۰۰ | ۴۵۶۰ |

منبع: انجمن صنفی تولید کننده‌گان اتانول ایران و محاسبات پژوهش

برای لحاظ کردن عدم قطعیت در میزان موارد اولیه سه سناریو در نظر گرفته شده است، سال پرمحصول سال با محصول متوسط و سال کم محصول برای دستیابی به توزیع احتمال متغیر احتمالی از روشهی آماری بهره بردش است. به این صورت که میزان تولید شمش محصول مورد بررسی در یازده استان عرضه کننده طی هشت سال (۱۳۸۶-۱۳۹۳) مورد ارزیابی قرار داده و با طبقه‌بندی کردن میزان محصولات در سه طبقه و استفاده از توزیع فراوانی هر طبقه به توزیع احتمال مشخص برای هر کدام از محصولات مورد بررسی دست یافته‌ایم. همچنین میزان موارد اولیه نسبت به میانگین نیز با استفاده از امید ریاضی و انحراف معیار داده‌ها برای هر طبقه حاصل گردیده است. لازم به تذکر است که دو محصول چندان‌قدرت و نیشکر جمعاً تحت عنوان مالس ظاهر می‌گردد. جدول ۲ این احتمالات را معکس می‌نماید.
جدول ۳. احتمالات و میزان مواد اولیه در دسترس نسبت به میانگین تحت هر سناریو

<table>
<thead>
<tr>
<th>مواد اولیه</th>
<th>کم محسوب</th>
<th>میانگین</th>
<th>بر محسوب (μ - σ)</th>
<th>بر محسوب (μ + σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ضایعات گندم</td>
<td>33/14</td>
<td>0/43</td>
<td>0/14</td>
<td>0/43</td>
</tr>
<tr>
<td>ضایعات گندم</td>
<td>14/11</td>
<td>0/29</td>
<td>0/17</td>
<td>0/29</td>
</tr>
<tr>
<td>ضایعات پرنج</td>
<td>14/12</td>
<td>0/43</td>
<td>0/14</td>
<td>0/43</td>
</tr>
<tr>
<td>ضایعات ژرت</td>
<td>29/1</td>
<td>0/71</td>
<td>0/15</td>
<td>0/71</td>
</tr>
<tr>
<td>ملسا</td>
<td>31</td>
<td>0/97</td>
<td>0/21</td>
<td>0/97</td>
</tr>
</tbody>
</table>

منبع: محاسبات پژوهش به دلیل گسترده‌ی محدوده مورد بررسی و تعداد پارامترها، در جدول ۴ به ارائه تعداد محدودی از پارامترها مهم مدل اکتفا می‌گردد.

جدول ۴. خلاصه‌ای از پارامترها

<table>
<thead>
<tr>
<th>واحد</th>
<th>ضریب تبدیل ضایعات گندم</th>
<th>ضریب تبدیل ضایعات ژرت</th>
<th>ضریب تبدیل ملسا</th>
<th>هزینه فرآوری ضایعات گندم</th>
<th>هزینه فرآوری ضایعات ژرت</th>
<th>هزینه فرآوری ملسا</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد</td>
<td>Δ(wheat)</td>
<td>Δ(barley)</td>
<td>Δ(corn)</td>
<td>β(wheat)</td>
<td>β(barley)</td>
<td>β(corn)</td>
</tr>
</tbody>
</table>
پارامترها

<table>
<thead>
<tr>
<th>واحد</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y (corn)</td>
<td>(\frac{1}{20})</td>
</tr>
<tr>
<td>Y (molasses)</td>
<td>6</td>
</tr>
<tr>
<td>حمل و نقل مواد اولیه</td>
<td>(\tau (i))</td>
</tr>
<tr>
<td>قیمت ملاح</td>
<td>618</td>
</tr>
<tr>
<td>حمل و نقل بیوتانول</td>
<td>(\tau)</td>
</tr>
<tr>
<td>قیمت بنزین فوب</td>
<td>519</td>
</tr>
<tr>
<td>هزینه خارجی مصرف بنزین</td>
<td>1640 pe</td>
</tr>
<tr>
<td>ریال به اراي هر لیتر</td>
<td>2000 ec</td>
</tr>
</tbody>
</table>

نتایج تجربی

نمودگری طبق آزمایش‌های شده، به تراش مصرف در سطح ویژه مسئولیت‌های محیط‌زهی، ۲/۱۰۰ میلیارد دلار در سال ۱۳۹۳ نسبت به میزان مصرف خود، به سوخت انگیز می‌شود. در واقع با توجه به محدود بودن ظرفیت پالایشگاه‌های موجود، تنها ۴/۲۳ به مصرف بهره‌مند بودن از کل تقاضا بنزین را با استفاده از سوختهای محیط‌زهی می‌توان جایگزین نمود و همین مقدار نیز منجر به صرفه‌جویی در هزینه‌های عرضه گنده به میزان ۱۰/۸/۴ میلیارد ریال می‌گردد.

1. Global Agriculture Information Network (GAIN)
2. Suárez
جدول ۵: مقایسه میزان و هزینه مصرف کنونی و مصرف به‌هنه سوخت

<table>
<thead>
<tr>
<th>مصرف به‌هنه</th>
<th>مصرف کنونی</th>
</tr>
</thead>
<tbody>
<tr>
<td>بنزين</td>
<td>پیونانل</td>
</tr>
<tr>
<td>میزان (هزار تن)</td>
<td>۶۵/۱۶</td>
</tr>
<tr>
<td>درصد</td>
<td>۹۹/۶۴</td>
</tr>
<tr>
<td>هزینه (ربال به ازار کیلوگرم)</td>
<td>۲۲۴۴۴/۴۴</td>
</tr>
<tr>
<td>هزینه (میلیارد ریال)</td>
<td>۴۶۲۳۱/۸۱</td>
</tr>
<tr>
<td>مجموع هزینه (میلیارد ریال)</td>
<td>۴۶۲۳۱/۸۱</td>
</tr>
<tr>
<td>میزان صرف جویی (میلیارد ریال)</td>
<td>۶۷۵/۸۸۲</td>
</tr>
</tbody>
</table>

منبع: محاسبات پژوهش

به دلیل تأخیر هزینه حمل و نقل و همچنین محدود بودن میزان تولید، نتایج حل مدل توصیه‌می‌کند که اتاتول سوختی در همان این‌سانی که تولید می‌گردد به مصرف برسد.

نتایج حل مدل نشان می‌دهد که در شرایط احتمالی بودن میزان مواد اولیه، ناشی از عدم بودن وضعیت جوی، تولیدات با استفاده از ضایعات برنج مقرون به صرفه می‌باشد دلیل این امر قیمت پایین ضایعات برنج و ضریب تبدیل بالای این ضایعات نسبت به سایر مواد اولیه از یک طرف و محدود بودن ظرفیت بالاپیشگاه‌های موجود از طرف دیگر می‌باشد. جدول ۶ نیز سهم مصرف هر بالاپیشگاه از مواد اولیه استان‌های عرضه کننده را تحت ستاره‌های مختلف متعکس می‌نماید:

جدول ۶: سهم مصرف هر بالاپیشگاه از مواد اولیه (ضایعات برنج)

<table>
<thead>
<tr>
<th>استان عرضه کننده</th>
<th>بالاپیشگاه</th>
<th>سال پر محصول</th>
<th>سال با محصول متوسط</th>
<th>سال کم محصول</th>
<th>مواد اولیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>خراسان رضوی</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>خراسان رضوی</td>
</tr>
<tr>
<td>گلستان</td>
<td>۴/۱</td>
<td>۶/۲</td>
<td>۶/۲</td>
<td>۶/۲</td>
<td>گلستان</td>
</tr>
<tr>
<td>فارس</td>
<td>۰</td>
<td>۳/۶</td>
<td>۳/۶</td>
<td>۳/۶</td>
<td>فارس</td>
</tr>
<tr>
<td>بوشهر</td>
<td>۰</td>
<td>۹/۵</td>
<td>۹/۵</td>
<td>۹/۵</td>
<td>بوشهر</td>
</tr>
<tr>
<td>خوزستان</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>خوزستان</td>
</tr>
<tr>
<td>مازندان</td>
<td>۰</td>
<td>۳/۶</td>
<td>۳/۶</td>
<td>۳/۶</td>
<td>مازندان</td>
</tr>
<tr>
<td>استان عرضه گنده</td>
<td>مواد اولیه</td>
<td>بالایشگاه</td>
<td>سال کم محصول</td>
<td>سال بر محصول</td>
<td>سال با محصول متوسط</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------</td>
<td>----------</td>
<td>---------------</td>
<td>--------------</td>
<td>------------------</td>
</tr>
<tr>
<td>اصفهان</td>
<td>فارس</td>
<td></td>
<td>2/86</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>لرستان</td>
<td>لرستان</td>
<td></td>
<td>0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>ایلام</td>
<td>مازندران</td>
<td></td>
<td>0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>ایلام</td>
<td>مازندران</td>
<td></td>
<td>0</td>
<td>4/1</td>
<td></td>
</tr>
<tr>
<td>ایلام</td>
<td>مازندران</td>
<td></td>
<td>0</td>
<td>5/2</td>
<td></td>
</tr>
<tr>
<td>ایلام</td>
<td>مازندران</td>
<td></td>
<td>0</td>
<td>6/2</td>
<td></td>
</tr>
<tr>
<td>ایلام</td>
<td>مازندران</td>
<td></td>
<td>0</td>
<td>7/2</td>
<td></td>
</tr>
<tr>
<td>ایلام</td>
<td>مازندران</td>
<td></td>
<td>0</td>
<td>9/2</td>
<td></td>
</tr>
<tr>
<td>ایلام</td>
<td>مازندران</td>
<td></td>
<td>0</td>
<td>5/3</td>
<td></td>
</tr>
</tbody>
</table>

منبع: محاسبات پژوهش
نمودار قیمت‌های سایه‌ای محدودیت ظرفیت مدل اولیه

شکل ۳. نمودار قیمت‌های سایه‌ای محدودیت ظرفیت مدل اولیه

هدف این است که با توجه به قیمت‌های سایه‌ای اقدام به توزیع پالایشگاه‌های موجود گردد. همان طور که شکل ۳ نشان می‌دهد، توزیع پالایشگاه‌های فارس، تهران، بوشهر، فم و قزوین بیش از سایر پالایشگاه‌ها منجر به کاهش هزینه عرضه کننده سوخت می‌شود. بنابراین در مدل پیشنهادی اقدام به افزایش ظرفیت این پالایشگاه‌ها می‌گردد و این کار تا جا به ادامه می‌یابد که با توجه به قیمت‌های سایه‌ای، توزیع ظرفیت پالایشگاه‌های مورد نظر بیش از توزیع سایر پالایشگاه‌ها منجر به کاهش هزینه عرضه سوخت گردد. بدین ترتیب، توزیع ظرفیت در جنگل‌های صورت می‌گیرد و در هر نقطه‌ای که قیمت‌های سایه‌ای توزیع ظرفیت پالایشگاه‌های دیگری را پیشنهاد کند گام بعد شروع می‌گردد و این بار اقدام به توزیع ظرفیت پالایشگاه‌های مورد نظر می‌گردد. در گام اول بعد از توزیع ظرفیت نمودار قیمت‌های سایه‌ای به صورت شکل ۴ می‌گردد.

شکل ۴. نمودار قیمت‌های سایه‌ای در گام اول
با توجه به شکل 4 گام دوم آغاز می‌گردد و در این گام اقدام به توسعه ظرفیت پالایشگاه‌های خراسان رضوی، قم، تهران و قزوین می‌گردد. به همین ترتیب با توجه به الگویی که قیمت‌های سایه ای بیشتری می‌کند اقدام به توسعه ظرفیت پالایشگاه‌ها می‌گردد و تا زمانی که قیمت‌های سایه‌ای مربوط به محدودیت ظرفیت صفر شود این روند ادامه می‌یابد. جدول 7 میزان افزایش ظرفیت هر پالایشگاه را در هر گام معکس می‌نماید:

جدول 7: میزان توسعه ظرفیت هر پالایشگاه در هر گام

<table>
<thead>
<tr>
<th>گام</th>
<th>ظرفیت</th>
<th>ظرفیت گام</th>
<th>ظرفیت پالایشگاه</th>
<th>ظرفیت پالایشگاه</th>
<th>ظرفیت پالایشگاه</th>
<th>ظرفیت پالایشگاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ظرفیت</td>
<td>ظرفیت</td>
<td>ظرفیت</td>
<td>ظرفیت</td>
<td>ظرفیت</td>
<td>ظرفیت</td>
</tr>
<tr>
<td>2</td>
<td>مرکزی</td>
<td>خراسان رضوی</td>
<td>خراسان رضوی</td>
<td>فارس</td>
<td>خراسان رضوی</td>
<td>خراسان رضوی</td>
</tr>
<tr>
<td>3</td>
<td>قم</td>
<td>بوشهر</td>
<td>بوشهر</td>
<td>خراسان رضوی</td>
<td>فارس</td>
<td>خراسان رضوی</td>
</tr>
<tr>
<td>4</td>
<td>فارس</td>
<td>تهران</td>
<td>تهران</td>
<td>بوشهر</td>
<td>بوشهر</td>
<td>بوشهر</td>
</tr>
<tr>
<td>5</td>
<td>قم</td>
<td>قم</td>
<td>قم</td>
<td>تهران</td>
<td>تهران</td>
<td>تهران</td>
</tr>
<tr>
<td>6</td>
<td>زنجان</td>
<td>زنجان</td>
<td>زنجان</td>
<td>قم</td>
<td>قم</td>
<td>قم</td>
</tr>
</tbody>
</table>

جدول 8: میزان ظرفیت هر پالایشگاه در هر گام

<table>
<thead>
<tr>
<th>گام</th>
<th>ظرفیت</th>
<th>ظرفیت گام</th>
<th>ظرفیت پالایشگاه</th>
<th>ظرفیت پالایشگاه</th>
<th>ظرفیت پالایشگاه</th>
<th>ظرفیت پالایشگاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ظرفیت</td>
<td>ظرفیت</td>
<td>ظرفیت</td>
<td>ظرفیت</td>
<td>ظرفیت</td>
<td>ظرفیت</td>
</tr>
<tr>
<td>2</td>
<td>مرکزی</td>
<td>خراسان رضوی</td>
<td>خراسان رضوی</td>
<td>فارس</td>
<td>خراسان رضوی</td>
<td>خراسان رضوی</td>
</tr>
<tr>
<td>3</td>
<td>قم</td>
<td>بوشهر</td>
<td>بوشهر</td>
<td>بوشهر</td>
<td>بوشهر</td>
<td>بوشهر</td>
</tr>
<tr>
<td>4</td>
<td>فارس</td>
<td>تهران</td>
<td>تهران</td>
<td>تهران</td>
<td>تهران</td>
<td>تهران</td>
</tr>
<tr>
<td>5</td>
<td>قم</td>
<td>قم</td>
<td>قم</td>
<td>قم</td>
<td>قم</td>
<td>قم</td>
</tr>
<tr>
<td>6</td>
<td>زنجان</td>
<td>زنجان</td>
<td>زنجان</td>
<td>زنجان</td>
<td>زنجان</td>
<td>زنجان</td>
</tr>
</tbody>
</table>

جدول 9: میزان ظرفیت هر پالایشگاه در هر گام

<table>
<thead>
<tr>
<th>گام</th>
<th>ظرفیت</th>
<th>ظرفیت گام</th>
<th>ظرفیت پالایشگاه</th>
<th>ظرفیت پالایشگاه</th>
<th>ظرفیت پالایشگاه</th>
<th>ظرفیت پالایشگاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ظرفیت</td>
<td>ظرفیت</td>
<td>ظرفیت</td>
<td>ظرفیت</td>
<td>ظرفیت</td>
<td>ظرفیت</td>
</tr>
<tr>
<td>2</td>
<td>مرکزی</td>
<td>خراسان رضوی</td>
<td>خراسان رضوی</td>
<td>فارس</td>
<td>خراسان رضوی</td>
<td>خراسان رضوی</td>
</tr>
<tr>
<td>3</td>
<td>قم</td>
<td>بوشهر</td>
<td>بوشهر</td>
<td>بوشهر</td>
<td>بوشهر</td>
<td>بوشهر</td>
</tr>
<tr>
<td>4</td>
<td>فارس</td>
<td>تهران</td>
<td>تهران</td>
<td>تهران</td>
<td>تهران</td>
<td>تهران</td>
</tr>
<tr>
<td>5</td>
<td>قم</td>
<td>قم</td>
<td>قم</td>
<td>قم</td>
<td>قم</td>
<td>قم</td>
</tr>
<tr>
<td>6</td>
<td>زنجان</td>
<td>زنجان</td>
<td>زنجان</td>
<td>زنجان</td>
<td>زنجان</td>
<td>زنجان</td>
</tr>
</tbody>
</table>

* جدول‌ها و نمودارها به‌منظور بهبود جلد، توضیحات کاملاً نمایش نمی‌گذارند.*
<table>
<thead>
<tr>
<th>تهران</th>
<th>زنجان</th>
<th>ایلام</th>
</tr>
</thead>
<tbody>
<tr>
<td>68420</td>
<td>78420</td>
<td>103819</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>خراسان</th>
<th>قزوین</th>
<th>آذربایجان غربی</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>12459</td>
<td>6733</td>
<td>آذربایجان غربی:</td>
</tr>
<tr>
<td>6735</td>
<td>6735</td>
<td>920788</td>
</tr>
<tr>
<td>15402</td>
<td>233422</td>
<td>854215</td>
</tr>
<tr>
<td>99866</td>
<td>99866</td>
<td>854215</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>خراسان</th>
<th>قزوین</th>
<th>آذربایجان غربی</th>
</tr>
</thead>
<tbody>
<tr>
<td>12459</td>
<td>6733</td>
<td>آذربایجان غربی:</td>
</tr>
<tr>
<td>6735</td>
<td>6735</td>
<td>920788</td>
</tr>
<tr>
<td>15402</td>
<td>233422</td>
<td>854215</td>
</tr>
<tr>
<td>99866</td>
<td>99866</td>
<td>854215</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>

به دلیل این که در مدل پیشنهادی پس از اقدام به توسعه ظرفیت نیاز استفاده از ضایعات برق شرکت کننده برآورد نموده و در این نسبت از کل این ضایعات مورد استفاده قرار می‌گیرد، توسعه ظرفیت نیز متوقف شود. همچنین به دلیل حضور هزینه‌های جدید و نقل در مدل توسعه ظرفیت بالای‌پیش‌گاهی توسعه‌های استان های عرضه کننده ضایعات مورد نظر در اولویت قرار دارد.

جدول 8 مقایسه میزان و هزینه مصرف کننده و مصرف بهره‌مند سوخت را بعد از اعمال کامل توسعه ضایعات نشان می‌دهد. همانطور که ملاحظه می‌گردد این بار حدود 7/12 درصد از بنزین مصرفی با بیوپلاستیک غیر پا می‌گردد و این امر سبب صرفه‌جویی در هزینه‌های عرضه کننده سوخت به میزان تقریبی 6 میلیارد ریال می‌گردد.
جدول 8 مقایسه میزان و هزینه مصرف کننده و مصرف پیشنهادی سوخت در آخرین گام

<table>
<thead>
<tr>
<th>مصرف پیشنهادی (هزار تن)</th>
<th>بیانیه</th>
<th>بنزین</th>
</tr>
</thead>
<tbody>
<tr>
<td>میزان (هزار تن)</td>
<td>۱۲۹۷/۸۳</td>
<td>۱۶۹۰/۲۵</td>
</tr>
<tr>
<td>درصد</td>
<td>۷/۱۳</td>
<td>۹۲/۰۷</td>
</tr>
<tr>
<td>۲۰۸۷/۴</td>
<td>۲۵۴۴/۴۴</td>
<td>۲۵۴۴/۴۴</td>
</tr>
<tr>
<td>هزینه (ریال به اراز کیلوگرم)</td>
<td>۲۷۰/۳۲</td>
<td>۳۰۰/۵۲</td>
</tr>
<tr>
<td>هزینه کل (میلیارد ریال)</td>
<td>۴۵۷۲۲۶</td>
<td>۴۶۳۲۱۸/۱۴</td>
</tr>
<tr>
<td>مثل ایران صرف جویی (میلیارد ریال)</td>
<td>۱/۵۹۹۲۱</td>
<td>۲/۰۸۲۷</td>
</tr>
</tbody>
</table>

منبع: محاسبات پژوهش

شکل ۵ میزان و هزینه جویی در هزینه‌های عرضه و تمامی در مصرف در هر گام در مقایسه با مصرف
در حل اولیه مدل را نشان می‌دهد:

شکل ۶ نمودار مقایسه صرفه جویی در هزینه ناشی از مصرف در هر گام در مقایسه با مصرف در حل اولیه
جدول 9 نیز سهم استفاده پالایشگاه هر استان از کل ظرفیت نشان می‌دهد. البته توزیع استفاده از ظرفیت بر اساس قیمت‌های صادقی تعیین کامل پالایشگاه‌های بوشهر، اصفهان، قم و قزوین را پیشنهاد می‌دهد. زیرا تولید این واحدها با صرفه اقتصادی همراه نخواهد بود. پالایشگاه‌های آذربایجان غربی نیز تنها با بخشی از ظرفیت خود اقدام به تولید می‌نمایند.

<table>
<thead>
<tr>
<th>استان</th>
<th>سهم پالایشگاه</th>
<th>سهم پالایشگاه</th>
<th>سهم پالایشگاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>خراسان رضوی</td>
<td>۱۰۰</td>
<td>۵۷/۲</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>لرستان</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>تهران</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>قزوین</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>ایلام</td>
<td>۱۰۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>اقلیم</td>
<td>۱۰۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>مرکزی</td>
<td>۱۰۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>بوشهر</td>
<td>۱۰۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>خوزستان</td>
<td>۱۰۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>قم</td>
<td>۱۰۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>آذربایجان غربی</td>
<td>۹۴/۸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>اصفهان</td>
<td>۰</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

منبع: یافته‌های پژوهش

از آن چه تا اکنون جایگزینی ۱۰٪ از بنزین مصرفی با اتانول سوختی وجود دارد، در حالی که توزیع ظرفیت اعمال می‌گردد، هر پالایشگاه پس از جایگزینی ۱۰ درصدی سوخت استان محل استقرار مالی اتانول تولیدی را به سایر استان‌های همجوار صادر می‌نماید. شکل ۵ نشان ناحیه توزیع اتانول سوختی بین استان‌ها را به نمایش می‌گذارد:
شکل 5. نقشه توزیع اندازه‌بندی استان‌های کشور

6. نتیجه‌گیری

تجلیل‌آمیزی سوخت‌های فسیلی، توسعه پایدار، متنوع ساخت میان انرژی برای ایجاد امنیت انرژی و مسائل زیست‌محیطی همگی موجب توجه به منابع انرژی تجدیدپذیر از جمله زیست‌توده گردیده است. امروزه فعالیت و بودجه دولت‌ها در امر تحقیق و توسعه و ایجاد سیستم‌های انرژی تجدیدپذیر بسیار افزایش یافته است. در این میان در کشورهای در حال توسعه مانند ایران این مسئله کمتر مورد اقبال قرار گرفته است. نظر به افزایش تفاوت‌های حاصل‌های انرژی و محدودیت‌های تأمین سوخت خودروها از سوی روند فراوانی نشر آلاینده‌ها از سوی دیگر، پژوهش حاصل‌های پرسی اولویت توسعه طرفینت پالایشگاه‌های موجود بی‌باناتوان در ایران پرداخته است. نتایج حاکی از آن است که:

1. تنها ۳۳/۷ درصد از سوخت مصرفی را می‌توان با ایجاد جایگزین‌های آب و همین میزان نیز منجر به

صرفه‌جویی در هزینه‌های عرضه کننده سوخت به میزان ۴/۱۰ میلیارد ریال در سال می‌گردد.
در بررسی اولیه‌ی توسع ظرفیت حاکی از این است که از بین سیاسته‌اندازی اتانول در این پژوهش، ابتدا توسع ظرفیت همه پالایشگاههای مورد بررسی موضوعیت خواهد داشت. چهار پالایشگاه بوشهر، اصفهان، یزد و قزوین از جهت بهره برداری اقتصادی در اولیه‌ی قرار نمی‌گردند.

۳ همچنین این نتیجه‌ی حائز شد که توسع ظرفیت پالایشگاه‌ها طبق اولیه‌ی نشان داده شده در قیمت‌های سال‌های موجب می‌شود که در پروژه‌ی ایرانی سوخت به میزان تقریبی ۶ میلیارد ریال به طور سالانه می‌گردد. همانطور که نتایج پژوهش نشان می‌دهد در شرایط فعلی و ظرفیت بسیار کم و ناچیز پالایشگاه‌های موجود، عرضه اتانول سوخت در مقایسه با بیشینه‌ی هم‌عمر ناجی است. اما استفاده از زیست‌توسیعی به عنوان یک منبع انرژی به دلیل توسع اقتصادی و مسائل زیست‌محیطی جذاب است و از طرفی به عنوان یک عامل در تسهیب رسیدن به توسع پایدار از نمای می‌شود. لذا توجه جدی بر این منبع انرژی و ایجاد جنبیت در زمینه سرمایه‌گذاری برای تولید این سوخت‌هایی به‌سب صنعت‌سازان و توصیه‌ی می‌گردد.

منابع
[۱] آقایان، حسین. (۱۳۹۲). آموز تامه مصرف اتانول‌های نفتی انرژی‌زا و زمان‌های عمومی شرکت ملی پخش فرآورده‌های نفتی ایران، تهران.
دوره ۲۰، شماره ۲، بازه ۱۳۹۶ / نشریه انرژی ایران

[۵] کوشش‌الپزشکت وایت من، آدیان، دترل، جرارد (۱۳۹۰) توسعه انرژی زیستی: پیامدها و اثرات آن بر کاهش قفر و مدیریت منابع طبیعی. سازمان انتشارات چهاد دانشگاهی.

[۶] احمدی، کریم؛ قلی زاده، حشمت‌الله؛ عبادزاده، حمیدرضا؛ حسین‌پور، ربابه؛ حاتمی، فرشاد؛ فضلی، بهروز؛ کاظمی‌نیا، آرزو و مریم رفیعی (۱۳۹۴) آمار نامه کشاورزی سال زراعی ۹۳-۱۳۹۳ اول: محصولات زراعی. تهران.

