طراحی خشک کن بستر سیال خورشیدی و تاثیر تابش خورشیدی بر عملکرد خشک شدن

قاطعه وليام:

چکیده:
هدف این مقاله، طراحی یک خشک کن بستر سیال خورشیدی برای محصولات کشاورزی و بررسی عملکرد آن با توجه به میزان تابش خورشیدی می‌باشد. در این خشک کن به دلیل انتقال حرارت بالا، مواد با کیفیت بالایی در دمته و زمان کوچکی و با چاپی‌کنی انرژی خورشید به جای سوخت‌های سنگی برای گرافیت خشک می‌شوند. محصولات انتخاب شده، ذرت بوده که اندام متوسط ذرات، تخلخل بسته، اولیه و تابیده باید ذرت، به‌یک کیلو و دهمه می‌باشد. کیلوهای تابشی و دمته حرارتی با دمته 146 متر مکعب در ثانیه نیاز دارند. هوا گرم با توجه به یک و هوا کرک از طریق آزمایش به دست آمده است. بر اساس رابطه اولیه و ثانویه‌ی باید ذرت، به‌یک کیلو و دهمه می‌باشد. کیلوهای تابشی و دمته حرارتی با دمته 146 متر مکعب در ثانیه نیاز دارند. هوا گرم با توجه به یک و هوا کرک از طریق آزمایش به دست آمده است.

کلمات کلیدی:
تابش خورشیدی، محصولات کشاورزی، طراحی، و تاثیر تابش خورشیدی بر عملکرد خشک و شدن

ftm.vali@gmail.com
mohamedaminy@yahoo.co.uk

نویسنده‌ها:
(1) دانشجو کارشناسی ارشد مهندسی انرژی‌های تجدیدپذیر، پژوهشگاه مواد و انرژی
(2) مشاور مهندسی پژوهشگاه مواد و انرژی

Downloaded from necjournals.ir at 8:55 +0330 on Saturday February 6th 2021
مقدمه

خشک کردن، مرحله مهمی در صنایع غذایی و شیمیایی می‌باشد. هدف اصلی در خشک کردن محصولات غذایی، جذب رطوبت از ماده تا میزان مطلوب می‌باشد که در این فرآیند میکروپویی و شیمیایی به حالت برشته می‌شود. این چنین محصولات خشک شده، فضای کمتری را ایجاد کرده و هزینه‌های مربوط به بسته‌بندی، نگهداری و حمل و نقل کاهش می‌یابد. امروزه طرفین و سوی محصولات خشک شده در دسترس بوده و مصرف آن در حال افزایش می‌باشد. خشک کردن محصولات تحت تابش مستقیم خورشید، روشی سنتی بوده که همچنان از خبرات محصولات با نتایج ارزش‌آمیز استفاده می‌شود. در حال حاضر، هزینه سیال کمی می‌باشد، اما این روش نمایانگر نیز تازه‌تر استفاده از این روش، هزینه سیال کمی می‌باشد، اما این روش معمولاً ناز دارد. قدیمی‌ترین روش‌های استفاده در معرض محیطی با گرد و غبار و حوادث و پرندگان قرار می‌گیرد. در نوع سنتی، زمان خشک شدن سیال طولانی بوده و کمیت محصولات خشک شده همچون بنده، مانگداری، محتوای مواد معدنی، قطعات و بو کاهش می‌یابد. از طرف دیگر، خردسنجی هوا و مشاهده در آتی خشک کن و هزینه های جاری آن که معمولاً نسبتاً سوخته می‌باشد، همچنان استفاده از خشک‌کردن با اینکه باعث می‌شود نمره متوسط انرژی خورشیدی مورد نیاز تغییر یابد. استفاده از خشک‌کردن به‌طور عمومی منجر به تغییر می‌شود، اما در بعضی از این موارد، زمان خشک شدن طولانی بوده و باعث دردسر و ریزش‌های بیشتر می‌شود. در خشک‌کردن سیال به دلیل نزدیکی انتقال حرارت و جرم، سرعت خشک شدن، باعث می‌شود و برای مواد حساس به دما مناسب می‌باشد.

ارائه جزئیات علم سیالات از سال ۱۹۷۵ میلادی یکی از منبع‌های کتاب می‌باشد. با توجه به آن‌که شیمیایی و پیش از آن ۲۰۰۵ میلادی دانشمندان زیادی برای این بهره‌وری از این دانش از استعداد خشک‌کردن، و تجهیزات مربوطه در صنایع مختلف رشد قابل‌توجهی داشته‌اند. این تکنیک‌ها بسته به شرایط خشک کردن شرایط مختلف می‌باشند. نمونه ها و دیگر مواد در صنایع مختلف غذایی، دارویی و شیمیایی به صورت مختلف در حال استفاده می‌باشند. نوع و کارکرد خشک کن که برای ریز سیال در گذشته می‌باشد، این گونه بوده که در مصرف کاهش یافته و در واقع، استفاده از انرژی یکه خورشیدی در کنار یکی از قدرتمندترین فناوری‌ها خشک کن باعث بهبود و مزایای بالایی خشک کن خورشیدی می‌باشد. خشک کن برای ریز سیال خورشیدی نیز بهترین کنورسیا به‌طور کامل، با شکاف در دو مرحله، دسترسی به‌طور مداوم به سوخت خشک کن که به دلیل اینکه می‌تواند باعث بهبود در واقع، استفاده از انرژی یکه خورشیدی در کنار یکی از قدرتمندترین فناوری‌ها خشک کن باعث بهبود و مزایای بالایی خشک کن خورشیدی می‌باشد. خشک کن برای ریز سیال خورشیدی همچنین برای کشورهای گرم‌سیر که تابش طولانی داشته و میزان تابش خورشیدی بالا می‌باشد، بسیار مناسب است.
طرحی خشک کن بستر سیال خورشیدی

میزان نابساب خورشیدی محل مورد نظر، کرج با عرض ژنو افراپی ۳۵/۳۸ درجه شمایی، از اطلاعات نتیجه گرفته شده توسط شیمی‌دان مدل کلاسیک میزان‌سنج دارای دانشگاه ۲ قطعه‌ای و دانش بنیان روش‌نامه روز به مدل BD-۳۵۰۰۰ دارای تحلیلگر اطلاعات CM22 کلید گرفت. میزان خورشیدی در ضریب افقی در ساعت ۱۲ روز وسط ماه در ۶ ماهه بهار و تابستان سال های ۱۳۹۵-۱۳۹۶ به متوسط ۴/۷ کیلوولتی به دست آمده است. به دلیل کارکرد بستر خشک کن در باران و تابستان، فصل برداشت دزن، شب ۲۵ درجه به یاری جمع کننده های خورشیدی به عنوان یک بی‌هیات در نظر گرفته شده است: شب ییونه برای جمع کننده های خورشیدی در فصل تابستان ۱۰ درجه کمتر از عرض ژنو افراپی و در فصل بهار ۱۰ درجه بهتر از عرض ژنو افراپی منطقه می‌باشد. میزان‌سنج نابساب خورشیدی بر روی این شب برابر ۴/۷ کیلوولتی به متوسط ۴/۷ در ساعت ۲۴ می‌باشد. میزان، دمای هوا در فصل بهار و تابستان ۴/۷ کیلوولتی به متوسط ۴/۷ در ساعت ۲۴ می‌باشد. اکثریت دمای، ورودی و خروجی جمع‌کننده های خورشیدی به توجه به اطلاعات کارکرده جمع کننده های خورشیدی دمای به یاری داده است. اختلاف دمای ورودی و خروجی جمع‌کننده های خورشیدی به توجه به اطلاعات کارکرده جمع کننده های خورشیدی مربوط به جمع کننده های خورشیدی موجود در بی‌خورشید مواد و انرژی ۱۰ درجه سناتی گردید. به این طراحی نیز با توجه به شرایط کالری جمع‌کننده‌های خورشیدی افزایش دما را در ۱۰ درجه سناتی در نظر می‌گیریم. این فرضی و میزان‌سنج دمای هوا می‌تواند به خروجی جمع‌کننده قابلیتی در دمای ۴۰ درجه سناتی گردید باشد. خواص هوای گرم در این دما از جداول ترمودینامیک قابل شناخت می‌باشد. در شکل ۱ دمای شما در این دما به جمع‌کننده های خورشیدی منطقه می‌باشد. هوای گرم توسط دمای به سرعت از طریق زیرکی توزیع نتیجه جمع‌کننده هوا وارده به بستر مواد شده و آنها را به حرکت وا می‌دارد. انتقال حرارت و جرم مواد و هوا گرم باعث کاهش رطوبت مواد می‌شود. پس از آن هوا به محیط تخلیه می‌شود.

شکل ۱: طرح شماتیک خشک کن بستر سیال خورشیدی

در این پژوهش، مساحت شکل‌های بزرگی از مجموعه بجای این مساحت به‌طور تصادفی انتخاب شده و ابعاد آن توسط کولیس انتدای شده است. ابعاد متوسط آن در این مجموعه با توجه به قطر غربال برای گردن ۱/۸۰۰ میلی متر می‌باشد. کرویت این ذرات با استفاده از جدول کرویت برای می‌باشد. برای نمودن دقت در این ذرات را به طور معمول (نه بسپار مطابقه و وی بسپار مطابقه) درون این طرف قرار می‌دهیم. جرم ذرات را نیز انتخاب زیر است. میزان حجم آب داخل نظر به حجم کل طرف میزان تخلخل بسترا می‌دهد. در آزمایشگاه این ضرب برای ۱/۲۴۴ بسترا آمده است. حال با داشتن جرم ذرات و حجم آن می‌توانیم چگالی توده ای و خالص را به ترتیب ممکن‌سازیم. حداکثر عدد ۴۹/۶۰۰/۵/۰۷۶۰۰ کیلوگرم بر متر مکعب محاسبه کنیم. در هنگام حداکثر سیالیت، نمودن بسترا از معادله (۱) معادله (۱) به دست می‌آید:

\[\frac{1}{\varphi} - \varepsilon_{mf}^3 = 11 \]

برای ایجاد سیالیت کامل در بسترا ذرات، باید دیب و سرعت مناسبی از هوای گرم را وارد بسترا کنیم. سرعت ظاهری در شرایط حداکثر سیالیت باید باید ذرات از طریق معادله (۲) به دست می‌آید:

\[\frac{1.75}{\varepsilon_{mf}^3} \left(\frac{d_s u_{mf}}{\mu} \right)^2 + \frac{150(1 - \varepsilon_{mf})}{\varepsilon_{mf}^3 \varphi^3} \left(\frac{d_s u_{mf}}{\mu} \right)^2 = \frac{d_s^3 \rho_s (\rho_s - \rho)}{\mu^2} \]

حداقل سرعت سیالیت با حل معادله بالا ۵/۴ متر بر ثانیه به دست می‌آید. سرعت کاری در سیالیت کامل ۵/۴ متر بر ثانیه.

جمع کندن، خوشنی‌ای باید هوای گرم مورد نیاز برای کاهش رطوبت ذرات از ۱۸/۶۰۰/۶ بر پایه تر نه ۱۲/۲۵ بر پایه خشک

را تأمین کنید. این میزان رطوبت برای ماندنگاری ذرات به مدت یک سال می‌باشد.

دیب حجمی و جرم‌های گرم با اطلالات بسترا آن در بالاترین محدوده سرعت در بسترا با قطر داخلی ۱۸/۰۸ سانتی‌متر، برای ۱۴۶/۰۰۰/۳۵ مترگرم در ثانیه و ۱۶۵/۰۰۰/۳۵ کیلوگرم در ثانیه می‌باشد. دمده حزولی باید قدره به نامین این دیب

هوا بایستد. با در نظر گرفتن بارش ۴۰% بارش جمع کندن تخت، مساحت سطح آن از معادله‌های (۳) به دست می‌آید:

\[Q = mC_p \Delta T \]
روش و دستگاه های آزمایش

جمع کننده خورشیدی از نوع پوشت در و حرکت هوا با دلیل صفحه جابجایی می‌باشد. صفحه جابجایی فوقالمندی با شیارهای دوگانه ای و رنگ مشکی مات می‌باشد. برای کاهش اثربخشی حرارتی از صفحه جابجایی از عایق صفحه استفاده شده است. سه جمع کننده خورشیدی در شب ۲۵ درجه بی‌روی شامل فرآیند گرفته‌اند. کانال‌های خروجی سه جمع کننده را به دمده حرارتی (یا دیب حجمی) ۸۵ مترکمک در ساعت، امپراز ۹۵/۰، آمر و ولت ۲۵۰ ولت و توان ۱۵ کیلووات و سپس آن به محکمکش کن (استوانه بلکسی گلاس به قطر داخلی ۸۸۰/۰ سانتی‌متر و ارتفاع ۶۰ سانتی‌متر) متصلاً می‌باشد با ورود به جمع کننده الکتریکی گرم شده و توزیع دمده به داخل محکمکش کن می‌شود و مواج موجود روی صفحه توزیع کننده محکمکش کن توسط هوای گرم شناور می‌شود. بررسی سیالی جمع کننده الکتریکی هوا و تجهیزات مربوط به اتصال بر اساس طراحی های مربوط به ساختمان شده و در شکل (۲) نشان داده شده است.
آماده سازی نمونه‌های ذرت

محتوای رطوبت اولیه نمونه‌ها با شکل کردن آنها در اندازه ۱۳۰۰ درجه سانتی‌گراد به مدت ۱ ساعت تعیین شده است. نمونه‌های ذرت را داخل بست و ریخته و ارتفاع آن را اندازه گیری می‌کنیم. سپس نمونه‌ها را خارج گردن و وزن اولیه آن را تیپ می‌کنیم، در این مرحله، شکل کن را روش‌کرده تا ۱۰ دقیقه بدون وجود مداد، خواص گرم از آن عبور کرده و به جای‌پایی به‌ریسی از ایجاد حرارت در طول آزمایش جلوگیری شود. حال می‌توان نمونه‌ها را درون بست ریخته و آزمایش گرده، شروع کرده، منجر به مورد مطالعه در این آزمایش‌ها نوع توزیع کننده هوا و زمان آزمایش‌ها می‌باشد.

میانگین دمای هوا و دمای بست به میزان تابش خورشیدی در آن زمان و دمای محیط وابسته است. آزمایش‌های مربوط به عملکرد شکل‌کن در چندین دوره ۸ روزه در فصل تابستان سال ۱۳۹۰ انجام شده است. تمامی آزمایش‌ها روند یکسانی داشته و برای نمونه نتیجه حاصل از آزمایش‌ها در تاریخ ۲۷ و ۲۸ تیر ماه ۱۳۹۰ (۱۸ و ۲۲ جولای ۲۰۲۱) از ساعت ۱۰:۳۰ تا ۱۳:۳۰ انجام گردیده است. در طی فرآیند شکن دندان برای پایین نمودارهای مورد نظر باید جرم نمونه را پایین برای این کار ابتدا هر یک دقیقه و سپس هر ۵ دقیقه جرم نمونه‌ها را تیپ می‌کنیم. مقدار عددی منجر به مورد آزمایش در جدول ۱ ذکر شده است. با توجه به زمان آزمایش‌ها، نظر خورشیدی ساعت ۱۲:۱۵ می‌باشد.

<table>
<thead>
<tr>
<th>A6</th>
<th>A5</th>
<th>A4</th>
<th>A3</th>
<th>A2</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۳</td>
<td>۴</td>
</tr>
<tr>
<td>۲۷</td>
<td>۲۷</td>
<td>۲۷</td>
<td>۲۷</td>
<td>۲۷</td>
<td>۲۷</td>
</tr>
<tr>
<td>۳۱</td>
<td>۳۱</td>
<td>۳۱</td>
<td>۳۱</td>
<td>۳۱</td>
<td>۳۱</td>
</tr>
<tr>
<td>۷۱</td>
<td>۷۱</td>
<td>۷۱</td>
<td>۷۱</td>
<td>۷۱</td>
<td>۷۱</td>
</tr>
<tr>
<td>قبل از نظر</td>
</tr>
<tr>
<td>ظهیر</td>
<td>ظهیر</td>
<td>ظهیر</td>
<td>ظهیر</td>
<td>ظهیر</td>
<td>ظهیر</td>
</tr>
</tbody>
</table>

جدول ۱. منجر به مورد بی‌خودش در خشکی کردن در دمای ۱۵ درجه سانتی‌گراد

شکل ۲: اندازه‌گیری ذرت در کننده‌ها خشک کن شامل جمع کننده‌های خورشیدی هوا

ب‌- نمایی بست شکل‌کن شامل محفل بست سیال، دمای بست، حالت جلوگیری کننده‌ها و تجهیزات اندازه‌گیری
خشک کردن تحت تابش مستقیم خورشید

یک نمونه از ذرت بر روی یک صفحه استیل در یک لایه نازک تحت تابش مستقیم خورشید قرار داده شد تا پس از خشک شدن با نمونه خشک شده از خشک کن مقایسه شود. این نمونه هر روز به مدت 6 ساعت تحت تابش مستقیم بود و شب هنگام در ظرفی جمع آوری می‌شد.

بحث و نتایج

نمونه‌گیری نشان می‌دهد که تابش مستقیم خورشید در روزهای آزادی از ساعت 10.30 تا زمان ظهور افزایش یافته و پس از این زمان تا به انتهای افزایش ممکن است. در این زمان، تابش مستقیم خورشید در بررسی‌های مختلف تأثیر مثبتی بر سرعت نسبت به مدت شدت نشان می‌دهد. در این زمان، تابش مستقیم خورشید در بررسی‌های مختلف تأثیر مثبتی بر سرعت نسبت به مدت شدت نشان می‌دهد.

نتایج بررسی‌های مختلف نشان می‌دهد که در شدت تابش مستقیم خورشید به مدت 15.30 ساعت، به مدت 4 ساعت و 5 ساعت شروع یک باره زمانی یک ساعت در محوری درک شده است.

نتایج بررسی‌های مختلف

<table>
<thead>
<tr>
<th>شدت تابش مستقیم خورشید (وات بر متر مربع)</th>
<th>تا ساعت 15:30</th>
<th>وسط</th>
<th>تا ساعت 16:30</th>
</tr>
</thead>
</table>
دماي هوای محيط (درج چيزسانتي گراد) - طول روز

شکل 4: میانگین دماي هوای محيط در ساعت 13:30 تا 16:30

دماي هوای ورودی به بستر خيشک كن (درج چيزسانتي گراد) - طول روز

شکل 5: میانگین دماي هوای ورودی به بستر خيشک كن در ساعت 13:30 تا 16:30

Downloaded from necjournals.ir at 8:55 +0330 on Saturday February 6th 2021
محتوای رطوبت در مقابل زمان

شکل ۱: محتوای رطوبت ذرات پایه خشک در مقابل زمان خشک شدن در شرایط مختلف آزمایش نشان می‌دهد. محتوای رطوبت بر اساس گرمی که گرم بر پایه خشک باید شده است، زمان لازم برای رسیدن به محتوای رطوبت نور می‌باشد. از این منحنی ها مشخص می‌شود، این شکل تابع نوع توزیع کندنه‌ها و زمان آزمایش را نشان می‌دهد. یافته‌های کلی بینی بر این است که در یک ارتفاع بستر و سرعت ثابت استفاده از توزیع کندنه با روندهای برگزگن زمان خشک شدن را افزایش می‌دهد. زمان ناگهان بستر و زمان خشک شدن تأخیر دارد و در دماهای بالاتر زمان خشک شدن کاهش می‌یابد. در سه مرحله از این آزمایش‌ها با دو نوع توزیع کندنه‌ها محتوای رطوبت و زمان خشک شدن تقریبا مشابه یکدیگر بودند. همه آزمایش‌ها تقیی منحنی ایجاد کرده و در دماهای بالا، انتقال حرارت و جرم بالا بوده و ذخیره رطوبت تا در سرعت‌های بالایی چشمگیر می‌باشد. در دماهای بالایی نرخ انتقال حرارت کم و سرعت هوا ناشی از خروج رطوبت از مواد دارد. مشابه این نتایج در خشک کردن بادمجان بیان شده است [17]. در تمامی آزمایش‌ها دمای بستر ورودی به بستر ثابت نمی‌باشد، زیرا میزان تابش خورشیدی و دمای محیط در هر لحظه تغییر می‌کند.
نرخ خشک شدن در مقابل زمان خشک شدن

سیستمی خشک شدن از منحنی نرخ خشک شدن در مقابل زمان به دست می‌آید. شکل‌های ۷ نمودار نرخ خشک شدن پایه خشک را با زمان در شرایط مختلف کاری نشان می‌دهد. با توجه به این شکل، نرخ خشک شدن هر زمان با کاهش زمان و یا کاهش محتوای رطوبت کاهش می‌یابد. همانطور که قبلاً اشاره شد، محتوای رطوبت محصول همراه با کاهش زمان کاهش می‌یابد. جوابگویی رطوبت از داخل ماده به سطح و نرخ تبخیر رطوبت از سطح ماده به هوا با کاهش محتوای رطوبت ماده کاهش می‌یابد. در دماهای بالا، نرخ اولیه خشک شدن با افزایش در طول زمان کاهش می‌یابد. نمودار در نرخ خشک شدن در شرایط مختلف کاری کاملاً مشهود می‌باشد. این شکل نشان می‌دهد که نرخ خشک شدن در ظاهر برای ارتفاع بستر ۱ سانتی‌متر، سرعت ۲/۵ متر بر ثانیه و قطر روزه ۳ میلی‌متر در مقیاسی با دیگر شرایط با‌لا می‌باشد. با سرعت هوا ۷/۵ متر بر ثانیه، ارتفاع بستر ۱ سانتی‌متر و قطر روزه ۴ میلی‌متر، قیل از ظهر کمترین نرخ خشک شدن گزارش‌شده است. به طور کلی، زمان خشک شدن با افزایش دمای هوا (که ناشی از تابش خورشیدی و دمای محیط می‌باشد) افزایش می‌یابد. نرخ خشک شدن با استفاده از روزه ۴ میلی‌متری بسیار کمتر از توزیع کندنه با قطر روزه ۲ میلی‌متر می‌باشد.

شکل ۷: منحنی نرخ خشک شدن در بر پایه خشک شدن در مقابل زمان خشک شدن در شرایط مختلف کاری
منحنی اول و دوم خشک شدن

منحنی اول خشک شدن همان منحنی نرخ خشک شدن در مقایسه به منحنی دوم دو خشک شدن مشتق می‌باشد. بنابراین، منحنی اول خشک شدن را در شرایط مختلف کاری نشان می‌دهد. در این نمودارها، یک مرحله کوچک اولیه مشخص است، اما مرحله خشک شدن با نرخ تابیت وجود ندارد. فقدان مرحله نرخ تابیت ممکن است به دلیل نیوست فیلم نازکی از آب در روزهای باشند. از شکل 1-8، در مرحله خشک شدن با نرخ نزولی مشخص می‌شود: مرحله نزولی اولیه و ثانویه، اگرچه مرحله کوتاه از نرخ نزولی اولیه به ثانویه کامل مشخص نیست و می‌باید شکل 9 منحنی دوم خشک شدن را در شرایط مختلف کاری نشان می‌دهد. در این نمودارها، نقطه شروع منحنی در حالت ورود به بیشتر مقادیر منفی به دهنده مرحله اول خشک شدن می‌باشد. بعد از آن، مقادیر افزایش یافته و با محور افقی تقاطع داشته که این نقطه تقاطع به نام حالت ورود به بیشتر بهای اولیه X نشانه می‌شود. بعد از اینکه این مقادیر به حداکثر مقدار خود رسیده، کاهش یافته و به محور افقی تقاطع می‌شود. نقطه‌ای‌که منحنی دوم خشک شدن شروع به بیشتر به بیشتر مقدار منفی به دهنده مرحله اول خشک شدن می‌باشد. نقطه‌ای‌که منحنی دوم خشک شدن شروع به بیشتر به بیشتر مقدار منفی به دهنده مرحله اولیه X نشانه می‌شود. اگرچه نقطه این نقطه در این نمودار به نظر نخست می‌رسد، می‌توان مقدار عدید این دو منحنی بحرانی را از منحنی های اول و دوم خشک شدن به دست آورد. جدول 2 مقادیر حاصل از شرایط مختلف دوم و ثانویه با استفاده از شرایط مختلف کاری را نشان می‌دهد.
مقاله‌ای بین‌زمانی دویی خشک شده در خشک کن بستر سیال خورشیدی و تحت تابش مستقیم صورت گرفته است. زمان خشک شدن تحت تابش مستقیم برای یک نمونه ۵ روز و در هر روز ۶ ساعت بوده است و در مجموع، ۳۰ ساعت به طول انجامیده است. زمان خشک شدن تحت تابش مستقیم در مقایسه با خشک کن بستر سیال خورشیدی بسیار طولانی می‌باشد. شکل ۹ نمونه‌ای از درختان شده در هر دو شرایط را نشان می‌دهد. نتایج نشان می‌دهد، در تابش مستقیم و نیز تابش نامناسب، تعداد زیادی خشک شده در این دو روش کاملاً مشهود است. درختانی که در تابش مستقیم قهوه آی می‌باشد که ممکن است بر اثر تابش مستقیم نوعی سودکن‌کی در

جدول ۲: مقادیر محتوای رطوبت بجرانی اولیه و ثانویه در شرایط مختلف کاری

| ارگان‌ها |
|---|---|---|---|---|---|
| | A6 | A5 | A4 | A3 | A2 | A1 |
| محوریات |
| Xir1 (gr/gr db) | 0/816 | 0/1572 | 0/1310 | 0/1211 | 0/1230 | 0/1237 |
| Xcr1 (gr/gr db) | 0/1916 | 0/2471 | 0/4101 | 0/1572 | 0/1572 | 0/1572 |
نتیجه‌گیری
هدف از این تحقیق طراحی خشک کن و کشت سیال برای مهار محدودیت‌هایی که به‌وجود آمده در تأیید مستقیم گرمی نسبت به محصولات حاصل از خشک کن دارد. در مجموع، کفیتی درخت‌های حاصل از خشک کن خورشیدی بالاتری می‌باشد.

شکل 10: مقایسه حاصلات خشک شده (الف) و توسط خشک کن سیال خورشیدی (ب) تحت تأیید مستقیم خورشیدی.
مثولت به این تیپه می‌رسیم که کیفیت ذرات خشک شده توسط خشک صنعتی سیال خورشیدی نسبت به تابش
مستقیم خورشیدی بسیار بالاتر بوده در عین حال زمان کمتری برای خشک شدن نیاز دارد.

فهرست علامت

<table>
<thead>
<tr>
<th>علامت</th>
<th>تعریف</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_c</td>
<td>مساحت جمع کننده خورشیدی، m^2</td>
</tr>
<tr>
<td>C_p</td>
<td>نرخ حرارتی، $J/Kg.K$</td>
</tr>
<tr>
<td>d_s</td>
<td>اندازه ذرات جامد</td>
</tr>
<tr>
<td>g</td>
<td>شتاب جاذبه زمین، m/s^2</td>
</tr>
<tr>
<td>I_T</td>
<td>تابش خورشیدی روی سطح جمع کننده خورشیدی، W/m^2</td>
</tr>
<tr>
<td>M</td>
<td>جرم نمونه، gr</td>
</tr>
<tr>
<td>M_d</td>
<td>جرم نمونه خشک، gr</td>
</tr>
<tr>
<td>\dot{m}</td>
<td>دم جرمی هوا، Kg/s</td>
</tr>
<tr>
<td>\dot{Q}</td>
<td>توان حرارتی، W</td>
</tr>
<tr>
<td>ΔT</td>
<td>اختلاف دمای</td>
</tr>
<tr>
<td>u_{mf}</td>
<td>حداکثر سرعت سیالیت، m/s</td>
</tr>
<tr>
<td>$X(db)$</td>
<td>محتوای رطوبت (دبایی خشک)</td>
</tr>
<tr>
<td>X_{Cr1}</td>
<td>محتوای رطوبت به‌رغم‌الزام برای نوبتی، gr/gr</td>
</tr>
<tr>
<td>X_{Cr2}</td>
<td>محتوای رطوبت به‌رغم‌الزام نوبتی، gr/gr</td>
</tr>
<tr>
<td>ε_{mf}</td>
<td>تخلخل بستر در شرایط حداکثر سیالیت، %</td>
</tr>
<tr>
<td>ρ_s</td>
<td>چگالی جامد، Kg/m^3</td>
</tr>
</tbody>
</table>
\[\rho \quad \text{کیلوگرم در متر بسته‌ای} \]
\[\mu \quad \text{کیلوگرم در متر بسته‌ای} \]
\[\eta \quad \text{درصد خورشیدی} \]
\[\phi \quad \text{درصدی} \]

منابع

