بررسی عددا عملکرد یک دیوار ترومپ
در راستای بهینهسازی مصرف انرژی

مهران ربانی، ولی کلانتری، امیر بیگی کرمی

چکیده:
در این مقاله، نحوه عملکرد سیستم دیوار ترومپ و چگونگی برقراری جنبان داخل اتاق در حالت دائم و غیردائم بررسی قرار گرفته است. هدف بررسی انداره بهبود سیستم (حالت دائم) برای ذخیره انرژی و تاثیر آن بر فضای داخل اتاق از هنگام شروع به کار سیستم تا زمانی که سیستم به حالت دائم متغیر (حالت غیردائم) و همچنین محاسبه میزان سیالاتی است که انرژی ذخیره شده در دیوار به فضای داخل اتاق در نبود تابش خورشید انتقال می‌یابد. برای شروع به کار سیستم، فرض شده که تمامی سرعت‌ها صفر است و فضای داخلی اتاق در حداکثر دما که در زمان دار است (T=10°C) قرار دارد و سیستم با شروع تابش خورشید و دریافت انرژی حرارتی خورشید توسط دیوار شروع به کار می‌کند.

کلمات کلیدی:
دبیار ترومپ، حالت غیردائم، انرژی حرارتی خورشید

rabaniasd@stu.yazduni.ac.ir

1) دانشجوی دکتری مهندسی مکانیک گرایش تبدیل انرژی، دانشگاه یزد
2) عضو هیات علمی دانشگاه یزد. استادیار گروه مکانیک
3) مدیر شرکت نفت، شرکت ملی یخچال و فرآورده‌های نفتی ايران واحد یزد

نویسنده: مسعود
مقدمه

در حال حاضر، حدود چهل درصد از کل مصرف انرژی، مربوط به ساختمان می‌گردد. بخش قابل توجهی از این انرژی صرف گرماپیمایه و سرمایش ساختمان می‌شود که علاوه بر مصرف پی‌رتوی سوخت‌های فسیلی، آلودگی محیط زیست را نیز به همراه دارد. در این مقاله، به جهت صرف‌جویی در مصرف سوخت و کاهش مشکلات زیست محیطی با ارائه ایده‌ای استفاده از انرژی خورشیدی جهت به حرکت در اورودن‌ها در داخل ساختمان توسط دیوار ترمومب، بدون استفاده از توریو محرکه با مصرف سوخت‌های فسیلی می‌توان گرماپیمایه دیگری، مصرفی مناسب طبق استانداردهای تهیه، تطابق را فراهم نمود.

در دهه‌های اخیر، تعداد زیادی از تحقیقات روی گرماپیمایه و سرمایش ساختمان‌ها با استفاده از دیوار ترمومب صورت گرفته است. بسیار به نظر محققین مربوط، هرکی از این مطالعات از دیدگاه‌هایی که بررسی نموده که از این جمله می‌توان به بررسی جنس دیوار، عملکرد دیوار ترمومب و آن بر جریان فضای داخل اتاق نشان داد. تأثیر فضای داخلی و... بر عملکرد این سیستم اشتهار نمود اکثر این تحقیقات به روش آزمایش صورت گرفته و تعدادی نیز به صورت عده‌ای مورد بررسی قرار گرفته است.

حسین ابасی‌پورا و همکارانش به روش آزمایش‌گاهی بررسی چگونگی عملکرد حرارتی یک دیوار ترمومب تحت سیستم غیرقالب برداندند [5]. اثبات کرد به ابعاد 750/25/30 متر مکعب و دیوار ترمومب از جنس آجر و به رنگ سایه به ضخامت 150 میلی‌متر و ابعاد 750/25/30 متر مربع درون اثاث قرار گرفته است. نتایج نشان داد که در مدت زمانی که دیوار گرم شده به این امر باعث گردن هوا می‌شود، همچنین نتایج بیانگر این است که در طول شب سرمایش اینجا می‌شود که باعث گردن هوا می‌گردد. بنابراین، با چپ درجه‌ی بسته شدن تا ان‌سی ورکولیشن ممکن جلوگیری شود.

أریبین جل و همکارانش به‌عنوان اکثریت در ساختمان‌ها با استفاده از دیوار ترمومب مورد بررسی قرار دادند [2]. نتایج نشان می‌دهد که با استفاده از دیوار ترمومب دمای اتاق بین 2/48 و 1/85 درجه سانتی‌گراد می‌گذارد که باعث برقراری شرایطی بهینه می‌شود.

نویاکوا [3] عملکرد سیستم دیوار ترمومب در محل نگهداری جویدی در یک منطقه استوایی از مورد بررسی قرار داد [4]. در این تحقیق، عملکرد حرارتی این سیستم با استفاده از روش عدی تغییر محدود مورد بررسی قرار گرفته است. با توجه به نتایج غربال‌شده در طی سال، در این تحقیق سیستم دیوار ترمومب به صورت نیمکره‌ای در نظر گرفته شده است. به عنوان نتیجه تابش خورشید، دیوار ترمومب به صورت نیمکره‌ای طراحی شده است. این عمل باعث شده که عملکرد سیستم دیوار ترمومب بهتر شده و در تام سال با توجه به عوامل دیگر چند جهت خورشید، این سیستم جوابگو باشد.

1) Huseyin Onbasioglu
2) Nwachukwu
3) Finite Elements
عبدالجبار خلیفalah و همکارن synthesis of different CaCl2.6H2O شهای متفاوت به روش عدید برداشتهند. در این بررسی، سه ماده مختلف CaCl2.6H2O قرار گرفته‌اند که عبارتند از: بنی، سطح هیدرید شده و پارابین گیاه. نتایج بدست آمده نشان می‌دهد که ضخامت 8 سانتیمتری نمک هیدرید شده در مقایسه با ضخامت 2 سانتی‌متری بنی و ضخامت 5 سانتی‌متری دیوار پارافینی، دما را داخل اتاق با کمترین تغییرات دماپی در شرایط مختلف حفظ می‌کند.

ویلفرد اوکانو و همکارش به بررسی تاثیر یک صفحه جداش از فرآیند متغیر نسبت به دیوار، بر روی عملکرد سیستم دیوار ترمی در محیط خورشیدی برداشته‌اند. بر اساس نتایج، با افزایش مقدار جذب صفحه حرارتی، حاره بند شده و انتقال حرارت در طول دیوار ترمی به‌پایین می‌یابد.

یا بررسی مقالات، مشخص شد که هیچگونه از آنها ابعاد به‌پیش‌برای ذخیره بیشتر انرژی، عملکرد سیستم در حال غیردارم، میزان انرژی ذخیره شده در این سیستم و مدت زمانی که این سیستم قابلیت گرمایش ساختن و نیروی انرژی حرارتی خورشید را دارد، مورد بررسی قرار ندارده است.

هندها مساحت

ابعاد اتاق: ۴۶۴ متر مربع، می‌پاتد و بر اساس مرجع (8)، ارتفاع دریچه‌ها (H2) و ارتفاع دیوار (H1) برای حل به ترتیب ۳/۴ متر و ۷/۴ متر و به‌نیای کانال (Wc) ۱/۲ متر و بر اساس مرجع (1)، ضخامت دیوار ترمی (W1) ۲/۳ متر در نظر گرفته شده است (شکل ۱).

شکل ۱ هندهسا مساحت مورد نظر

1) Abdul-Jabbar N. Khalifa
2) CaCl2.6H2O
3) Wilfred I. Okonkwo
معادلات حاکم بر جریان

معادلات حاکم بر جریان در سیال، معادلات ناویر-استوکس، پیوستگی و اثری می‌باشند. معادلات کلی حاکم بر جریان سیال، در حال آرام و دوبعدی و غیردائم به صورت زیر می‌باشند:

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
\]

\[
\frac{\partial u}{\partial x} + \frac{1}{\rho} \frac{\partial p}{\partial x} = -\frac{\partial}{\partial x} \left(\frac{v^2}{2} + \frac{u^2}{2} \right) - \frac{\partial}{\partial x} \left(\frac{1}{2} \rho u^3 \right) + \frac{\partial}{\partial x} \left(\frac{1}{2} \rho v^3 \right) + \frac{\partial}{\partial x} \left(\frac{1}{2} \rho \partial u \partial T \right)
\]

\[
\frac{g}{\nu} \left(\frac{\partial T}{\partial x} + \frac{\partial T}{\partial y} \right) = 0
\]

در مسائل جایگاهی علمی، سرعت مرجع مشخصی وجود ندارد، بنابراین، نیا و شرایط مشخصی آن. معادله حرارتی از مدل دو بعدی استفاده می‌شود که ارتفاع اتاق و طول مشخصه و ضریب انتقال حرارت می‌باشد. مدل‌های دو بعدی زیر توجه به اینکه شرط مرزی دیوار دارند، شار ثابت یا دما ثابت باشد، به صورت زیر تعریف می‌شود (در معادلات زیر دمای گرم دمای سرد و T_h میزان شار حرارتی می‌باشد):

\[
\Delta T_{ref} = \frac{q}{\alpha}
\]

\[
\Delta T_{ref} = T_h - T_c
\]

در این تحقیق با وجود شرط مرزی شار ثابت بر روی دیوار دیویک، می‌باشد. مدل حاکم بر جریان به این ترتیب، با جایگذاری موارد فوق در معادلات (1) إل. (4) معادلات به دست می‌آید:

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
\]

\[
\frac{\partial u}{\partial x} + \frac{1}{\rho} \frac{\partial p}{\partial x} = -\frac{\partial}{\partial x} \left(\frac{v^2}{2} + \frac{u^2}{2} \right) - \frac{\partial}{\partial x} \left(\frac{1}{2} \rho u^3 \right) + \frac{\partial}{\partial x} \left(\frac{1}{2} \rho v^3 \right) + \frac{\partial}{\partial x} \left(\frac{1}{2} \rho \partial u \partial T \right)
\]

\[
\frac{g}{\nu} \left(\frac{\partial T}{\partial x} + \frac{\partial T}{\partial y} \right) = 0
\]

\[
\Delta T_{ref} = \frac{q}{\alpha}
\]

\[
\Delta T_{ref} = T_h - T_c
\]

در اینجا بر اساس تولید داخل حجم یا جامد شرایط نفاوت دارید. اگر حجم یا جامد جداوه حرارتی باشد $F'(\alpha) = 0$ و اگر جامد یا حجم تولید حرارت نداشته باشد $F'(\alpha) = 1$ است.

جامد چهار حرارتی باشد $F'(\alpha) = 0$ و اگر جامد یا حجم تولید حرارت نداشته باشد $F'(\alpha) = 1$ است.
شرايط مرزي

شرايط مرزي حاکم بر مسالمه حاضر به صورت زير می‌باشد (شکل ۲):

با توجه به اينكه تمامي دیوارهای محفظه مورد بررسی ساكن می‌باشند، نتیجه می‌شود:

\[
\begin{align*}
X = 0 & \rightarrow U, V = 0 \quad \text{\&} \\
Y = 0 & \rightarrow U, V = 0 \\
X = L & \rightarrow U, V = 0 \quad \text{\&} \\
Y = L & \rightarrow U, V = 0
\end{align*}
\]

با توجه به اينكه دیوارهای بالا و پایین محفظه عابق هستند، نتیجه می‌شود:

\[
\begin{align*}
\frac{\partial^2 U}{\partial Y^2} & = 0 \\
\frac{\partial Y}{\partial Y} & = 0
\end{align*}
\]

دیوارهای سمت راست و چپ به ترتیب با شرط مرزی گاجنگی آزاد با محیط بیرون و دما تابید شده‌اند. برای دیوار سمت چپ بنی شیشه با توجه به اینکه دماي آن با توجه به مطالعات آقایان لی و چن (۱۳) بررسی شده، مابین دماي گرم دیوار و دماي سرد بیرون می‌باشد. در نتیجه، برای شیشه با توجه به شار جریان ورودی، نتیجه می‌شود:

\[
X = 0 \rightarrow Q = 0.2 - 0.5
\]

برای دیوار سمت راست با توجه به گاجنگی آزاد، نتیجه می‌شود (این نکته قابل ذکر است که \(h\) در اینجا مقدار ثابتی است که به برنامه داده می‌شود):

\[
\begin{align*}
\frac{\partial^2 U}{\partial Y^2} - h(T - T_m) & \rightarrow 0 \Rightarrow \frac{\partial Y}{\partial Y} - h(T - T_m) \\
\frac{\partial Y}{\partial Y} & = -\frac{h(T - T_m)}{k} \\
\frac{\partial Y}{\partial Y} & = \frac{h(T - T_m)}{k} L
\end{align*}
\]
شرايط محیط بیرونی برای شهر بیشتر در نظر گرفته شده که تاثیر آن در خرابی انقلاب محیط بیرون (h) و دمای محیط بیرون (T Accident) باید اعمال شده است.

نتایج

حالات دائم

در این حالت، زمان را در معادلات صفر قرار داده و ترم زمان را از معادلات حذف کرد و مسئله به صورت پایدار بررسی می شود. علت استفاده از حالت مذکور این است که تاثیر پارامترهای مختلف از جمله ضخامت دیوار، ارتفاع دیوار و ... را مورد بررسی قرار داده و بر اساس ابعاد بهینه بهینه بدست آمده، سیستم مورد نظر را برای کارکرد بهتر با در نظر گرفتن کمترین هزینه طراحی کرد. این بررسی برای جنس اجرای دیوار (Rc) و شارهای حرارتی w/m² و 100 w/m² و 0.5 و 150 نکران می شود. همچنین هدفه اولیه مورد بررسی در اینجا به جدول 1 می باشد.

تأثیر پهنای کانال بر عملکرد سیستم

یکنای پهنای کانال تاثیر به سبیل بر عملکرد دیوار ترومپ دارد. کاهش بیش از حد آن باعث کاهش کیفیت جرمی و افزایش افت اصطکاکی درون کانال شده و در عمل باعث کاهش تهویه و کردنش وا می شود. در مقابل افزایش بیش از حد آن اگرچه باعث کاهش افت اصطکاکی کانال می شود ولی در عمل باعث ایجاد جریان برگشتی شده که این امر خود باعث کاهش دیب جرمی و تهویه وا می شود. در نتیجه انتخاب پهنای بهینه کانال از عوامل مهم در طراحی دیوارهای ترومب می باشد. لازم به ذکر است که پهنای کانال همان فاصله هوابای میان دیوار و شیشه (Air gap) است.

جدول 1: هندسه مسئله برای بررسی عملکرد دیوار ترومپ

<table>
<thead>
<tr>
<th>محل مورد نظر</th>
<th>ابعاد بدون مسئله (متر)</th>
<th>ابعاد با بعد مسئله (متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ارتفاع دیوار (h)</td>
<td>1.0</td>
<td>1.2</td>
</tr>
<tr>
<td>پهنای کانال (W)</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>ارتفاع دریچه (h)</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>ضخامت دیوار (W)</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>
نتایج بدست‌آمده در این قسمت برای شار حرارتی 1000 W/m²، جنس آجری دیوار ترموب و هندسه داده شده در جدول 1 مورد بررسی قرار گرفته است. همچنین پهنایی 2/0 از 5/0 مری مورد بررسی قرار گرفته است.

شکل‌های 3 و 4 به ترتیب میزان سرعت به طور مناسب در دریچه‌های بالایی و پایینی دیوار ترموب و دیب جرمی غیربردی دریچه بالایی دیوار ترموب را نشان می‌دهند. همان‌طور که از شکل‌ها مشخص است، با افزایش پهنای کانال تا میزان خاصی، میزان سرعت داخل کانال، میزان سرعت غیربردی در دریچه‌های بالایی و پایینی دیوار ترموب و دب جرمی غیربردی در دریچه بالایی دیوار ترموب افزایش می‌یابد و با افزایش بیشتر پهنای کانال مقدار آنها کاهش می‌یابد.

همان‌گونه که از شکل‌های 3 و 4 مشخص است، پهنایی 1/25، 0/25 و 0/3 مری دبی و سرعت بیشتری نسبت به پهنایی دیگر دارد، ولی با توجه به اینکه دبی غیربردی از دریچه‌ها برای این سه پهنای بالغ‌تری یکی است، بر اساس شرایط طراحی محلی، بسته به نظر طراح، پهنایی بین پهنایی 0/25 و 0/4 مری انتخاب می‌شود.

تأثیر ارتفاع دریچه‌های وود و خروجی بر عملکرد سیستم

در این قسمت، تأثیر ارتفاع دریچه‌ها برای شار حرارتی 1000 W/m²، جنس آجری دیوار ترموب و هندسه داده شده در جدول 1 مورد بررسی قرار گرفته است. همچنین ارتفاع‌های مورد بررسی در این قسمت در جدول 2 آمده است. این نتیجه اینجا قابل توجه است که با تغییر ارتفاع دریچه‌ها، ارتفاع دیوار نیز تغییر می‌کند.

شکل 3) نمایه سرعت افقی بدون بعد در راستای عمودی کانال و امتداد دیوار ترموب
شکل ۴) میزان دبی جرمی خروجی از دریچه بالایی دیوار ترومپ برای پهناهای مختلف کانال

جدول ۲) ارتقاء‌های مورد بررسی

<table>
<thead>
<tr>
<th>ارتقاء بالای دریچه‌ها (متر)</th>
<th>ارتقاء بالای دیوار (متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/15</td>
<td>0/15</td>
</tr>
<tr>
<td>0/75</td>
<td>0/75</td>
</tr>
<tr>
<td>0/25</td>
<td>0/25</td>
</tr>
<tr>
<td>0/5</td>
<td>0/95</td>
</tr>
</tbody>
</table>

هر چه ارتقاء دیوار بیشتر شود، سطحی که شار حرارتی خورشید را دریافت می‌کند افزایش می‌یابد. همچنین میزان انرژی حرارتی خورشید که جذب شده بیشتر می‌شود و در نتیجه، سطحی که حرارت را به کانال و فضای اتاق می‌دهد تیز افزایش می‌یابد و باعث افزایش دمای هوا یا کانال می‌شود. همچنین میزان حرارتی که از طریق هدایت از دیوار به اتاق منتقل شده، بیشتر شده و در نتیجه، دمای اتاق نیز بیشتر می‌شود.

شکل‌های ۵ و ۶ نیز گفتگوهای قبلی را تصریح می‌کند و به عبارتی، با افزایش ارتقاء دیوار تا ارتقاء ۳/۷ متر دبی جرمی افزایش می‌یابد و با افزایش بیشتر با توجه به شکل‌های ۵ و ۶ دبی جرمی عبوری از دریچه‌ها و میزان سرعت در وسط کانال
کاهش یافته و جابجایی آزاد هم کاهش می‌یابد. در نتیجه، بر اساس مقادیر دبی و سرعت بدست آمده در شکل‌های ۵ و ۶ می‌توان نتیجه گرفت که ارتقاء ۲/۲/۲متری دیوار بهترین عملکرد را دارد.

[نمودار ۵] تغییرات دبی جرمی عبوری از دریچه بالایی دیوار ترومبا افزایش ارتقاء دیوار

[نمودار ۶] نمایه سرعت عمودی بدون بعد در وسط کانال (۰۵=۲) با افزایش ارتقاء دیوار
تأثیر ضخامت دیوار بر عملکرد سیستم

مسأله در اینجا برای شار حرارتی $R_e=44$, جنس افرازی w/m^2 و هندسه داده شده در جدول 1 مورد بررسی قرار گرفته است. همچنین ضخامت‌های مورد بررسی در این قسمت در جدول 3 آمده است. باید به این نکته توجه کرد که در این قسمت به‌عنوان کانال تابت است و ضخامت دیوار از سمت اتاق افزایش می‌یابد.

جدول 3 ضخامت‌های مورد بررسی

<table>
<thead>
<tr>
<th>ضخامت باید دیوار (متر)</th>
<th>ضخامت بدون بعد دیوار</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.075</td>
</tr>
<tr>
<td>0.1</td>
<td>0.15</td>
</tr>
<tr>
<td>0.2</td>
<td>0.25</td>
</tr>
</tbody>
</table>

با افزایش ضخامت دیوار ترمودمای اتاق افزایش یافته و باعث افزایش تابشی می‌شود. هر چه ضخامت دیوار بیشتر می‌شود، میزان انرژی ذخیره شده در دیوار ترمودمای بیشتر می‌شود. همچنین با افزایش ضخامت دیوار، سطحی که حرارت خورشید را به اتاق متقابل می‌گذارد، حرارت بیشتری به اتاق منتقل شده و باعث بالا رفتن دمای اتاق می‌شود.

شكل 7 نمایه سرعت عمودی بدون بعد در وسط کانال را مشخص می‌کند. همان طور که یکدیگر شده، با افزایش ضخامت دیوار ترمودمای اتاق افزایش یافته و در نتیجه، گرمایی بیشتری از دیوار به کانال منتقل می‌شود و اختلاف دمای مابین کانال و اتاق بیشتر شده و افزایش سرعت داخل کانال شده و در نتیجه، جابجایی آزاد افزایش می‌یابد که این امر خود باعث افزایش تهویه و گردش هوا داخل اتاق می‌شود. نتایج حاصل از شکل 7 بیانگر همین موضوع است که با افزایش ضخامت دیوار، میزان سرعت داخل کانال افزایش می‌یابد. همچنین شکل 8 میزان دیم جرمی خروجی از دیواره باعث افزایش ضخامت دیوار، میزان سرعت داخل کانال را نشان می‌دهد و همان طور که از شکل مشخص است، با افزایش ضخامت دیوار میزان دیم جرمی افزایش می‌یابد.

بر اساس نتایج شکل‌های 7 و 8 می‌توان نتیجه گرفت که سرعت و دیم جرمی دارند. ولی با توجه به اینکه این ضخامت‌ها میزان سرعت و دیم جرمی نزدیک به هم دارند و با توجه به اینکه افزایش بیش از حد ضخامت دیوار باعث کاهش فضای مسکونی و افزایش هزینه ساخت می‌شود، بسته به نظر طراح، ضخامت باید به دیواره بین 2/0 تا 3/0 متر انتخاب می‌شود.
شکل 7 نمایه سرعت عمودی بدون وسط کاتال (Y=0.5)

شکل 8 تغییرات دی جرمی گازی از دریچه بالایی دیوار ترموب به ازای ضخامت‌های مختلف دیوار

حالت غیردائم

در این حالت، ترمهای زمان در معادلات در نظر گرفته شده و محاسبات بر اساس آنها انجام شده است، انتخاب یک در این قسمت از اهمیت خاصی برخوردار بوده و در این حالت در نظر گرفته شده است، میزان انرژی ذخیره شده در دیوار است. بر اساس انرژی ذخیره شده در دیوار، میزان ساعتی که این انرژی ذخیره شده قضاوت اینکه این کمربان می‌باشد مشابه شده است.

هندرس مورد بررسی در اینجا بر اساس ابعاد بهینه بست آمده انتخاب شده که در جدول 1 اورده شده است. به علت پیکسان بودن روند تغییرات، نتایج فقط برای شار حرارتی 1000 w/m² به اورده شده است.
شکل‌های 9 الی 12 نشان‌دهنده توزیع دما و پروفیل دما برای شار حرارتی 100W/m^2 در زمان‌های مختلف می‌باشد.

همان‌طور که از شکل‌های 9 الی 11 مشخص است، در زمان‌های اواسط فقط کانال گرم شده و دما کانال، دیوار و فضاهای نزدیک دیوار از بقیه جاها بیشتر است. همین‌طور که از خطوط دما تابی نیز مشخص است، در زمان‌های ابتدایی تراکم خطوط دما تابی در اطراف دیوار و داخل کانال بیشتر است که با افزایش زمان تابی به بقیه قسمت‌های اطراف می‌باشد و همچنین با توجه به خطوط دما تابی می‌توان تغییرات قسمت‌های متغیر به این زمان‌ها، انتقال حرارت بالا، همایش است و کانال و دیوار به اندازه کافی گرم می‌شود. در این سمت‌ها خطوط جریان داخل اتاق شامل شکل گیرند و انتقال حرارت از طریق جابجایی صورت پذیرد.

در شکل‌های 12 الی 13 با گذشت زمان دما دیوار افزایش یافته و فضای اتاق نیز با گذشت زمان گرمتر شده تا به میزان حداکثر خود میرسد. همین‌طور که از توزیع دما مشخص است، در این زمان‌ها نیز کانال از طریق جابجایی و گرمایی دیوار از طریق هدایت به اتاق منتقل شده و فضای اتاق نیز گرم می‌شود و در زمان‌های انتهایی تقریباً دمای سمت چپ و راست دیوار یکسان شده و دیوار در زمان‌های انتهایی شروع به ذخیره انرژی کرده تا در زمان‌های انتهایی روز که تابش خورشید نیست، از این انرژی استفاده شود.
شکل 12: توزیع دما و خطوط دما ثابت در زمان $t=3200s$ (رسیدن به حالت دامن)

شکل 14: توزیع دما در نقطه وسط دیواره سمت چپ و دیواره سمت راست دیوار ترمب و همچنین در نقطه وسط دیوار

سمت راست اتاق را در طی زمان یک شار حرارتی 150 W/m^2 ثانیه می‌دهد. در انتها با حالت یکسان بودن روند تغییرات،

توزیع دما فقط برای یک شار حرارتی رسم شده است.

همانطور که از شکل مشخص است، دما در نقطه وسط دیواره سمت چپ دیوار ترمب با گذشت زمان افزایش می‌یابد که

نشان دهنده گذشته بروز حرارت خورشید در طی ساعات مختلف روز توسط دیواره می‌باشد. ولی همانطور که از شکل مشخص است، در ساعت‌های ابتدا روز تغییرات دما در دیوار زیاد است، ولی با گذشته زمان تغییرات دما کم شده تا به یک میزان ثابت می‌رسد و علت هم این است که یا گذشته زمان دیوار افزایش یافته ولی در زمان‌های انتهایی به علت برابر شدن انرژی ورودی و خروجی به دیوار (به تعادل رسیدن سیستم)، دما دیوار تقریباً ثابت شده و تغییرات شدیدی تندر. همچنین دما دیواره سمت راست دیوار ترمب با گذشت زمان افزایش می‌یابد که نشان دهنده جنوب شار حرارتی

توسط دیوار در طی روز و انتقال حرارت‌هایی در دیوار می‌باشد. ولی دمای سمت راست دیوار ترمب نسبت به سمت چپ

آن کمتر است و علت هم این است که سمت چپ در معرض شدت تابش خورشید می‌باشد. همچنین شکل 14 توزیع دما

در نقطه وسط دیوار سمت راست اتاق را نشان می‌دهد. همانطور که از شکل 9 نشان داده شده است، در زمان‌های

این‌یاد آن انتقال حرارت اغلب به صورت هاواناشر می‌باشد. در تابع، دما سمت راست اتاق زیاد افزایش یافته و پایین است

که این نتیجه از شکل 14 نیز مشخص است، در صورتی که در زمان‌های انتهایی انتقال حرارت اغلب به صورت جایگا

است که همین امر باعث شده که دما سمت راست اتاق افزایش یافته و بیشتر شود و افزایش دما در آن نشان دهنده

شکل گرفن ترمودیسکولیشن در طی روز در اتاق می‌باشد. ولی هم این است که اگر چرخش هوا داخل اتاق شکل تغییر

هوای گرم به داخل داخل منتقل شده و دما دیوار سمت راست اتاق گرم نمی‌شود و به عنوان جایگا آزاد آن با محیط

بیرون سرد یاد می‌ماند. در نتیجه گرم شدن دما دیوار سمت راست نشان دهنده شکل گرفن و چرخش جریان هوای

گرم داخل اتاق می‌باشد.
شکل 14 دمای بدون باد در نقطه وسط دیوارهای چپ و راست دیوار ترموپ و دیوار سمت راست اثاث در طی زمان میزان انرژی ذخیره شده از مسائل مهم در بررسی دیوارهای ترموم، میزان انرژی حرارتی ذخیره شده در دیوار می‌باید که بر اساس فرمول زیر محاسبه می‌شود:

$$ E = m(T - T_0) $$

بر اساس رابطه بالا، بايد اين انرژي را برای هر نقطه دیوار محاسبه و با هم جمع كرد تا انرژي ذخیره شده در دیوار برای هر زمان به دست آيد. در نتیجه، بر اساس توضيحات داده شده، نتیجه می‌شود:

$$ E = \sum_{i=1}^{n} m_i(T_i - T_0) $$

شکل 15 میزان انرژی ذخیره شده در دیوار را بر حسب زمان و برای شارهای حرارتی 50 و 100 واتسون می‌دهد. همان‌گونه که از شکل مشخص است، با گذشتن زمان، میزان انرژی ذخیره شده در دیوار افزایش می‌یابد. علت این است که با گذشت زمان دمای اتاق افزایش یافته و دمای کانال و اتاق به حال تعادل می‌رسد. در نتیجه، در این مرحله حرارت به میزان اندکی از دیوار به اتاق منتقل شده و بیشتر حرارت در دیوار ذخیره می‌شود. بنابراین، میزان انرژی ذخیره شده در دیوار افزایش می‌یابد. همچنین با افزایش شار حرارتی نیز میزان انرژی ذخیره شده در دیوار بیشتر می‌شود. چون با افزایش شار حرارتی دمای دیوار نیز افزایش یافته و در نتیجه، میزان انرژی ذخیره شده در آن نیز افزایش می‌یابد.
شکل ۱۵: میزان انرژی ذخیره شده در دیوار بر حسب زمان برای شارهای مختلف

با توجه به تلفات انرژی که از رابطه ۲۰ محاسبه می‌شود و با توجه به میزان ذخیره انرژی، میزان مدت زمانی که این انرژی ذخیره شده انتقال را گرم نگاه می‌دارد (در زمانی که خورشید نیست) از طریق رابطه ۲۱ محاسبه می‌شود. تلفات حرارتی بر اساس جابجایی آزاد انتقال با محدوده اطراف و تلفات حرارت هدایتی انتقال با محیط پیرون محاسبه می‌شود. رابطه محاسبه تلفات حرارتی بر اساس معادله زیر می‌باشد:

\[Q_L - h_A(T_{\text{air}} - T_{\text{in}}) + h_r(T_{\text{avg}} - T_{\text{in}}) \]

در محاسبه تلفات حرارتی معرف دمای متوسط دیوار سمت راست انتقال دما می‌باشد. اگر تلفات انرژی محاسبه شده در رابطه ۲۰ برای یک ثانیه عملکرد سیستم باشد، در نتیجه میزان تلفات انرژی برای ۱ ساعت کار سیستم در صورت یک متر مربع ذکر شده مدت زمانی که انرژی ذخیره شده توانایی گرم کردن انتقال را در دیواری برای شارهای حرارتی ۵۰ و ۷۰ و ۵۰۰ و ۲۰۰۰۰۰ نگاهشده است.

\[\text{است.} \]

همانطور که از جدول ۲ مشخص است، با افزایش شار حرارتی مدت زمانی که انرژی ذخیره شده توانایی گرم کردن انتقال را در نیود تابش خورشید دارد. افزایش می‌پاید و نشان دهنده این است که هر چه شار حرارتی افزایش پیدا مدت زمان گرم نگاه داشتن انتقال نیز افزایش می‌پاید. این نتایج یبانگر آن است که عملکرد سیستم خوب است و سیستم توانایی گرم
تغییر داشتن اثرات تقریباً با 7 ساعت دارد، ولی میزان این وابستگی با تغییر جنس دیوار و افزایش عایقی دیوارهای افزایش داد.

جدول 4: مدت زمانی که انرژی ذخیره شده در نیب دیاپتیک تأثیر کردن اثرات تقریباً می‌تواند دارد

<table>
<thead>
<tr>
<th>شار حرارتی (W/m²)</th>
<th>t(h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>650</td>
<td>6.80</td>
</tr>
<tr>
<td>100</td>
<td>7.05</td>
</tr>
<tr>
<td>150</td>
<td>7.16</td>
</tr>
</tbody>
</table>

شکل 16 میزان دیب جرمی خروجی از دریچه باوای دیوار ترموب در زمان‌های مختلف و برای شار 100 W/m²

نتیجه‌گیری

از مهم‌ترین مزایای سیستم دیوار ترموب استفاده از انرژی خورشیدی (انرژی‌های نو) جهت گرمایش ساختمان می‌باشد که این عمل باعث کاهش مصرف سوخت‌های قشلی، ذخیره متابی سوختی و کاهش آلودگی محیط زیست می‌شود.

نتایج نشان می‌دهد که با شروع به کار سیستم، دما دیوار و فضاهای اطراف آن از بیخ ناقص اثرات بی‌شده و با گذشت زمان دما دیوار افزایش یافته و در کنار ان دما اثرات نیز از طریق هدایت از دیوار و هم از طریق جابجایی از افزایش می‌یابد در زمان‌های انتهایی دما هوا اثرات و دما هوای کنال به تعادل رسیده و در این زمان‌ها حرارت بی‌شیر
به صورت ارزی اندکی ذخیره شده در دیوار در می‌آید. همچنین بر اساس نتایج بدست‌آمده، جنس اجزای دیوار ترموب توانایی
گرم تهیه داشتن اتاق را در نیویز تبیین خورشید، برای مدت زمان بالغ ۷ ساعت دارد. همچنین جداکرد دما
۳۰ در می‌آید یا این در حالی که دما محیط بیرون ۱۰ در نظر گرفت شده است. این سیستم در
کاهش ای افزایش رطوبت هیچگونه نقش ندارد و مقدار رطوبت ثابت باقی می‌ماند.
تشکروقددانی
این مقاله با حمایت مالی شرکت ملی پخش و فرآورده‌های نقی صورت گرفته است. ضمناً نهایت تبکر از زحمات و
همکاری‌های مهندس‌های مالک بی‌کلام مدل عامل شرکت ملی نفت و انرژی به عنوان مشاور صنعتی این طرح را داریم.
فهرست علائم
این مقاله با حمایت مالی شرکت ملی پخش و فرآورده‌های نقی صورت گرفته است. ضمناً نهایت تبکر از زحمات و

\[
g = \text{بردار شتاب تقل (m/s}^2) \quad A = \text{مساحت} (\text{m}^2) \quad P = \text{فشار (pa)}
\]

\[
Pr = \text{عدد پرانتل} \quad R_k = \text{نسبت ضریب هدایت حرارتی جامد به سیال}
\]

\[
Ra = \frac{g \beta(T_\infty - T)}{\nu \alpha} \quad \beta = \text{ضریب انبساط حجمی (1/\text{C})} \quad \theta = \text{دما بدون دوست}
\]

\[
u, \nu \quad \text{میلی‌سیال (m/s)} \quad \text{T} = \text{درجه C}\] \quad \text{کنترل حرارتی (W/m}^2 \text{– k)} \quad \text{ناتوجه حرارت ماشین (W/m}^2 \text{– k)} \quad \text{کنترل حرارتی (W/m}^2 \text{– k)}
\]

\[
\rho = \text{چگالی (kg/m}^3) \quad \beta = \text{ضریب انبساط حجمی (1/\text{C})} \quad \theta = \text{دما بدون دوست}
\]

\[
i = \text{انرژی داخلی (kJ/kg)} \quad k = \text{ضریب انتقال حرارت ماشین (W/m}^2 \text{– k)} \quad \text{کنترل حرارتی (W/m}^2 \text{– k)}
\]

\[
\nu = \text{دما محیط بیرون (°C)} \quad \alpha = \text{ضریب انتقال حرارت جامد (W/m}^2 \text{– k)} \quad C_p = \text{گرمایی ویژه در فشار ثابت (kJ/kg K)}
\]

منابع

