ارزیابی تاثیر ایوان ساختمان‌های مسکونی در بهینه سازی مصرف انرژی سالانه

سیده مهسا ببقری، ماریا کردچم‌شیدی، ضیمب پیراسته

چکیده:
در کشور ما ساختمان‌های مسکونی یکی از اصلی‌ترین مراکز مصرف انرژی محسوب می‌گردد. طراحی معماری مناسب می‌تواند با استفاده از راهکارهای تولید انرژی به کاهش انرژی مصرفی ساختمان منجر شود. ایوان یکی از عناصر اصلی معماری شمال کشور است که امروزه در اکثر ساختمان‌های مسکونی به‌جوار نامناسب طراحی می‌شود. پژوهش حاضر سعی دارد با اصلاح انتزاع طراحی ایوان، میزان انرژی مصرفی سالانه ساختمان را بررسی کند. در این راستا به طراحی ایوان مطلوب و مدل سازی آپارتمانی مسکونی در خطه طبرستان و شهر بابلسر در سه حالت بدون ایوان، با ایوان و با ایوان دارای دیوارهای مشبک با نرم‌افزار انرژی بلاس پرداخته و انرژی مصرفی برای سرمایش و تامین روش‌های را مورد تجزیه و تحلیل قرار می‌دهد. نتایج حاکی از تاثیر مثبت ایوان طراحی شده در کاهش مصرف انرژی در این آپارتمان بوده‌است.

تاریخ دریافت مقاله:
تاریخ پذیرش مقاله:

کلمات کلیدی:
ایوان، تامین روش‌های سرمایش، مصرف انرژی معماری مسکونی

Email: Mahsa.bagheri_1989@yahoo.com
Email:m.kordjamshidi@umz.ac.ir
Email:shima.pirasteh@gmail.com

1) کارشناس ارشد معماری، دانشکده معماري، دانشگاه مازندران (نویسنده مستول)
2) استادیار و عضو هیئت علمی گروه معماری، دانشگاه مازندران
3) کارشناس معماری، دانشکده معماري، دانشگاه مازندران
مقدمه

در اکثریت مصرف انرژی در کشور، بخش ساختمان یکی از مراکز اصلی مصرف کننده انرژی می‌باشد. در ساختمان‌های مسکونی و تجاری در حوالی 37٪ کل مصرف سوخت کننده انرژی که این بخش در مقایسه با سایر بخش‌ها نظیر شستن، کشاورزی، حمل و نقل سهم قابل توجهی را به خود اختصاص داده است. این در حالی است که روشنایی، نشینه‌سازی و نورپردازی مطروح‌فضا هم نیز خودراه‌کننده‌ای مصرف انرژی هستند. بنابراین با توجه به مصرف بالای انرژی در ساختمان‌های مسکونی، بهبود سیستم‌های انرژی و اراپی راه‌کارهای طراحی کاهش مصرف انرژی ضروری به نظر می‌رسد.

از عناصر شاخص در معماری مسکونی شمال شرقی، فضای نیمه‌باز اپوآ است. در سواحل دریای خزر به دلیل شرایط مناسب اقلیمی فضاهای نیمه باید پیشرفتی به نوع جوش به وسیله این سلسله‌های انرژی گردید و اختصاص مثبت به شاخه نیمه‌باز خانه‌های معمولی و پرکاربردی نشان‌داده و نیز هما اقتصادی‌های ساختمانی چندگانه بوده به این ترتیب که در نهایت به سال‌ها افزایش در بازه از نوای تغییرات اندازه‌های این اقلیم و نهایی به دستیابی به تغییرات حمل و نقل نیز شروع و تغییرات قاره‌ای اپوآ را در این وضعیت در غربی‌ای مقدماتی در برگرفته و پیشروی‌های مبنای مفهوم در مصرف انرژی و ساختمان‌های نیمه‌باز که روشنایی فضاهای نیمه‌باز اپوآ که در این منطقه رواج پیدا دارند قرار گیری اپوآ در جهتی جوشونی و شبیه‌نما بناست که موجب یک‌گروهی از طیب‌تر و دید مناسب به سمت پیوند و افزایش بروزگاهی می‌گردد.

اپوآ را در ساختمان‌های مسکونی باید به گونه‌ای طراحی شود که نیازه‌های مصرف انرژی برای تأمین شرایط آسانی کاهش باید اما مناسب‌سازی در طراحی ساختمان‌های امروزی ای توجه به کاستن از میان اختصاص داده شده به اپوآ، این عنصر مهم در کاهش مصرف انرژی ساختمان، به عنصر زاویه بین ساختمان تبدیل گشته‌اند که دیگر پاسخ‌گوی عامل‌های پیشین خود نیستند و نقش خود را در تامین روش‌بندی و تهیه‌سازی از دست داده‌اند.
از اوایل دهه 1970 میلادی، بحران انرژی و تحریم‌های آن را در کشورهای مختلف جهان و تأسیس کرده‌اند. این وضعیت موجب شد که نیاز به مصرف انرژی بالاتری ایجاد گردد.

در دهه‌های اخیر، پژوهش‌های جدیدی در زمینه کنترل مصرف انرژی و راه‌حل‌های لازم در کاهش مصرف انرژی در طراحی معماری ساختمان‌ها در ایران و سایر کشورهای دنیا انجام شده و بسیاری از انتخاب‌هایی به طراحی و اجرای ساختمان‌های پایدار، اقتصادی و هوموشنده شده‌است.

در سال 1388 پژوهش‌های دیگر بررسی می‌کردند که با نظر داشتن انرژی مصرفی و آبادی‌گی منتهاز از آن، راه‌هایی برای شایستگی طراحی در ساختمان‌های پایدار و گردشگری از نظر طراحی و حتی در خصوص مصرف انرژی ساختمان‌های ایندیه آزاد داده‌اند. از دیگر پژوهش‌های این زمینه می‌توان به پژوهش‌های سوسرووا و همکاران [9] در سال 2013 اشاره کرد که در آن با استفاده از پرسی‌های دقیق و تجربه‌گیر که‌پشت‌های گیاهی در ساختمان، کاهش

جذب انرژی خورشیدی و کاهش بار ناپاسخه را رقم زده‌اند.

دولت‌های و همکاران [10] در سال 1393 انتخاب‌های مختلف بر میزان مصرف انرژی در ساختمان‌ها مورد بررسی قرار گرفت. برای این منظور، از ترم‌های افزایش سه‌گزه جهت مدیریت و انجام محاسبات ساختمان نمودن به سه‌گزه تهیه کننده، بندعباید و تریم‌بندی استفاده کردن، تنظیم این پژوهش حاکی از این است که برای شرکت‌های تهیه‌کننده انرژی استفاده از اجرای آینهٔ بیشترین تأثیر را در کاهش مصرف انرژی دارا است. این‌گونه برای شرکت‌های اجرا آنج نمود و برای تهیه‌برنگی بیشترپی‌بینی بیش‌اندازه شده‌است. پژوهش لندن‌بریگ و همکاران [11] در سال 2004 به مطالعه میزان اثر استفاده از مصالحی در جذب انرژی می‌پردازند. پژوهش‌های ساختاری ساختمان با مصالحی که به صورت تجاری مورد استفاده قرار دادن. نتایج حاصل از این پژوهش به نتایج‌های قبل توجه جنس مصالح مورد استفاده در ساختمان‌های مورد بررسی مصرف انرژی در ساختمان‌های اثر دارد.

پژوهش‌ها جهت در نظر گرفتن داده‌های انرژی در بررسی مسکونی امتیازی، نشان‌دهنده آن را در راستای مصرف‌های پایداری و سرشماری ساختمان‌های مورد بررسی قرار دهند. پژوهش‌های این‌های با تغییرات و طراحی تکنیک‌های ناشی از نگهداری در شهر بازکردن، کاهش و آب‌رسانی بی‌پراکن حفظ محوریت ساخت‌سازی در ساختمان‌ها وجود آب‌رسانی مشابه و عدم وجود آب‌رسانی را از طریق مدل‌سازی در نظر گرفتار انرژی.
نشریه انتريز ايران / دوره ** شماره ** فصل*** سال 1331

پلاس مورد فقد و بررسی قرار می‌دهد. داده‌های اقتصادی در نظر گرفته شده برای بررسی و مدل‌سازی وضعت ایران در شهر تهران در این دوره افزوده می‌شود و وضعیت آب و هوایی شهر تهران در سال‌های 1385-1391 بهره و به عنوان نمونه مورد بررسی قرار گرفته شد و با توجه به محصولات در داده‌های آب و هوایی، ازداده‌های استفاده شده است

که صحیح گذاری نشدهاند.

روند حل مسئله و روش پژوهش

به منظور طراحی ایوان مناسب برای مدل‌سازی در آیروپاتمی مسکونی در شهر تهران ابتدا به سه عامل مهم و مؤثر بر عکس العمل کاربران در استفاده از این عنصر معمولاً مهم در طراحی پردادخت شد. این عوامل شامل الف: ابعاد عملکردهای ایوان، ب: موقعیت قرارگیری و محیطی بوده است.

الف: ابعاد عملکردهای ایوان

امروزه فضایی نیمه یا ایوان که مکانی برای درک طبیعت این خطه و تجربیات حسی متفاوتی از فضا می‌پاشند، با به طور کامل از این حذف گردیده‌است یا جای خود را به تصاری کوچکی که عملکردی همچون این ابزار به منظور تکه‌گیری نظروف یا خشک کردن بلو، هاست داده‌اند. به نظر می‌رسد یکی از دلایل این مسئله کوچک، پرداخت فضا و مساحت ایوان و مشابهت آن با زندگی‌های عرض محدود که از نمای برون زده است. باشند. فضای ایوان اگر مساحتی بیشتری را به خود اختصاص دهد، می‌تواند به نق فضای عملکردی در این تبدیل گردد.

ب: موقعیت قرارگیری

بهترین موقعیت قرارگیری ایوان در این اقلیم ایوان‌های رو به جنوب است. به دلیل اعتدال هوای این خطه ایوان‌های جنوبی تقریباً در تمام فصول سال قابل استفاده هستند. در نتیجه ایوان جنوبی منابع آب انتقال به داخل یا خارج مانند جدول‌های جنوبی و در نتیجه ایجاد نمایش یا مشاهده به دلیل ناب‌توجه به آفت‌ها. نق ایوان به فضا نمی‌گردد.

ج: محیط

ارتباط و دید غوشه بین مصرف و فضای نیمه باز ایوان در معماری این خطه رقم خورده‌است. گشادگی ایوان به سمت فضای بیرون و به تبع این بیابان برنگرایی در قسم معماری مسکونی این خطه موجب گردید چاپ‌افزاری در فضای خصوصی ایوان و مصرف معمور رنگ کنتری گیرد.
و نهایت استفاده بیشتر ساختن آپراتورهای مسکوپی از فضای زابلوفر تبدیل اعتقادیدار فضا و تبدیل فضاهای نیمه باید اپراتورهای فضایی متعادل که دارای

چشم اندیز مناسبی است را در هنگام ساخته

با در نظر گرفتن مسائل فوق‌البیوئی در یک آپراتور 4 طبقه مسکوپی بروی بیولوک هک نوع متداول آپراتورهای

بایسته به شرایط بوده است، طراحی کردن اپراتور طراحی‌شده واقع در جهت‌های جنوبی و دراز ابعاد 4/2، 4/4 متری بوده با ساختنی زندگی در سیستمی و فضاهای جمعی خانه با به خود اختصاص ده تا از این طریق پتانسی و

عملکردیهای کشش نشستن، جدا خوردن، استراحت و خوابیدن برای یک خانواده گردد. در جهت‌های رو به گذش نیز دیوپاگ

مشکی به ارتفاع 1/2متر با حفره‌هایی به ابعاد 15×10 سانتی‌متر طراحی گردد سپس تا ضمن خفظ محرمان از ورود

چربی‌ها ممکن است، با استفاده این آپراتور در نرم‌افزار اپراتور بالا و فنا نهایتی 0/105

نقاط وجود اپراتور با دیوپاگ مشکی، اپراتور بدون دیوپاگ مشکی و عدم وجود اپراتور در طبقات مختلف این آپراتور در طول یک سال مورد

یک برسی قرار گرفته.

هدف از پژوهش حاضر بر این بوده است که تاثیر اپراتور با سه حالت ذکر شده در آپراتورهای مصرفی ساخته‌اند در طبقات

مشخص این آپراتور مورد بررسی قرار گرفته و ارزیابی گردد. اگر آپراتور مصرفی در کل ساخته‌اندی سبای مدل‌هایی در نظر

گرفته شد، تحقیق طبیعی و مکانیکی-خن کریب به عنوان سیستم سرمایشی و تمام‌های فلورسانش فرآیند با بازده نوری

40 لوم/برای نیاز پردازی روش‌پذیری در نظر گرفته شد. با توجه به اینکه با حرارت در سه حالت در نظر گرفته شد برای اپراتور در

آپراتور مورد نظر سیستم سرمایشی و روشنایی بکسی در نظر گرفته شد است تغییرات حساس در اعداد به دست آمد در

خصوص میزان نیاز به انرژی الکتریکی مربوط به تغییرات نوع اپراتور خواهد بود و سیستم‌سازی و روشنایی و مصالح مورد

استفاده به عنوان مبنای نظری در نظر گرفته شده و به عنوان منجر در انتخاب موارد مورد نظر می‌باشد.

مصالح در نظر گرفته شده برای دیوپاگ های خارجی شامل 13 میلی‌متر گچ دربار و جدار به ضخامت 25 سانتی‌متر

شامل دو رزیف 10 سانتی‌متر بلک دیسک و 5 سانتی‌متر قاب با لایه ساخته‌ای مشابه با لایه ساخته‌ای مسکوپی.

برای بام 3 سانتی‌متر اسفالت، 3 سانتی‌متر شیشه، 15 سانتی‌متر فضای خالی به عنوان بام 13 سانتی‌متر مسکوپی و

زیرسازی آن در نظر گرفته شد. برای مجارا به دوجداره با ضخامت شیشه‌ای 3 میلی‌متر به دلیل آن در ذهن 13 میلی‌متر فضای

خالی در نظر گرفته شد. دلیل انتخاب بیون سطح به همراه 3 میلی‌متر تراکت برای بام آپراتور در این منطق این مسئله بوده

است که با وجود نیاز به استفاده از بام بیون به عنوان کوپی راپی طراحی بام در این خطه به منظور جلوگیری از تغییر بازان

در حالی آپراتور، مناسب‌های امروزی تهران این آپراتور های این منطق شاها بام سطح طراحی و به منظور کاهش هزینه‌های
مربوط به فرش کف، با پوشش‌های جوان، آسفالت و یا سیمان‌کاری تکمیل و با رها خواهند شد. لذا شرایط رابط در آپارتمان‌های موجود در سطح شهر، برای محاسبه انرژی الکتریکی در کل ساختمان در سه حالت تامبده شده برای ایوان‌ها در نظر گرفته‌شده. دوباره‌ای آپارتمان‌های معاصر در این هزینه عموماً به صورت دو‌دراجه آرا می‌گردند که در این مدل‌سازی نیز دوباره دو‌دراجه با 5 سانتی متر فاصله بین جدارها مبناهای عمل قرار گرفته. در هنگام شیب سازی این آپارتمان‌های خانه‌های مسکونی موجود در مجاورت و همسایگی این آپارتمان نظر گرفته نشده.

جداول 1 و 2 مشخصات مربوط به مصالح انتخابی را نمایش می‌دهد.

جدول 1) جنس و خواص فیزیکی مواد بکار رفته در جدارهای خارجی نمای ساختمان

<table>
<thead>
<tr>
<th>جنس مصالح</th>
<th>ضربه هایت</th>
<th>ضخامت</th>
<th>گرمای وزه J/kg.K</th>
<th>چکالی kg/m3</th>
</tr>
</thead>
<tbody>
<tr>
<td>گو1</td>
<td>0/16</td>
<td>10</td>
<td>830</td>
<td>950</td>
</tr>
<tr>
<td>گو2</td>
<td>0/16</td>
<td>3</td>
<td>2000</td>
<td>1200</td>
</tr>
<tr>
<td>بلک پنبهٔ 1</td>
<td>1/4</td>
<td>10</td>
<td>880</td>
<td>2300</td>
</tr>
<tr>
<td>اجر سفال</td>
<td>0/83</td>
<td>10</td>
<td>800</td>
<td>1700</td>
</tr>
</tbody>
</table>

جدول 2) جنس، خواص فیزیکی و تشخیصی مصالح بکار رفته در جدار بیرونی نمای ساختمان

<table>
<thead>
<tr>
<th>جنس نمای</th>
<th>ضربه هایت W/m.K</th>
<th>ضربه یاز بوشیمی جنبی</th>
<th>چکالی kg/m3</th>
<th>اجر نسوز</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/935</td>
<td>0/83</td>
<td>1700</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در شکل 1 نقشه تیپ طبقات این آپارتمان مسکونی با تعداد طبقات 4 طبقه مسکونی بر روی پلوت در شهرستان باسفر و در شکل 2 آپارتمان را در حالت بدون ایوان، وجود ایوان با جداره مشابه و وجود ایوان بدون جداره مشابه می‌پیماید.
شکل 1) نقشه طبقات آپارتمان مسکونی ۴ طبقه بر روی پیلوت در شهرستان بابلسر

شکل 2) تصویر آپارتمان در سه حالت بدون ایوان، وجود ایوان با یک جداره مشبک و وجود ایوان بدون یک جداره مشبک

یافته‌ها

طبق جدول 3، در حال حاضر ایوان با دیواره‌ای مشبک میزان نیاز فضایی به روشنایی در طبقات مختلف حدوداً برای با 8400 کیلووات ساعت در حال حاضر درون دیواره‌ای مشبک 1007 کیلووات ساعت است. بنیادی در حال حاضر ایوان با دیواره‌ای مشبک میزان نیاز فضایی به روشنایی در تمامی طبقات به میزان کمتر از 0/0 درصد افزایش یابد کرده‌است.
همچنین با مقایسه نیاز به روش‌نامی فضا در حالت وجود ایوان با دیواره مشبک و حالت حذف کامل ایوان مشاهده گردید. نیاز فضا به روش‌نامی در طبقات مختلف در حالت بدون ایوان تقریباً برابر با 998 کیلووات ساعت است. بنابراین در حالت وجود ایوان با دیواره مشبک میزان نیاز فضاها به روش‌نامی نسبت به حالت بدون ایوان در تمامی طبقات به میزان کمتر از ۱٪ افزایش ییده است. با توجه به کثرت روزهای چگونه در خیابان و تابی منابع آفتاب تهیه در فصولی چون نابسامان، و همچنین تابی پراکنده در اکثر روزهای سال، تفاوت چندانی بی‌قرار دادن ایوان مشبک در کاپش روش‌نامی فضای داخلی رقم تخریده است زیرا در اکثر روزهای سال تابی پراکنده بوده و ایوان مشبک در جلوگیری از ورود مستقیم و نور خورشید به درون ساختمان نخواهد داشت.

جدول ۳) مقایسه میزان نیاز به روش‌نامی در حالت وجود ایوان با جداگانه مشبک و بدون جداره مشبک

<table>
<thead>
<tr>
<th>نیاز به روش‌نامی (الکتریسیسته بر حسب کیلو وات ساعت)</th>
<th>وجود ایوان بدون دیواره مشبک (الکتریسیسته بر حسب کیلو وات ساعت)</th>
<th>بدون ایوان (الکتریسیسته بر حسب کیلو وات ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>طبیعی اول</td>
<td>1007</td>
<td>1008</td>
</tr>
<tr>
<td>طبیعی دوم</td>
<td>1007</td>
<td>1008</td>
</tr>
<tr>
<td>طبیعی سوم</td>
<td>1007</td>
<td>1008</td>
</tr>
<tr>
<td>طبیعی هیچار</td>
<td>1007</td>
<td>1008</td>
</tr>
</tbody>
</table>

اگرچه وجود ایوان بدون جداره مشبک نسبت به عدم وجود ایوان ۱/۰٪ میزان استفاده از ارزی برای روش‌نامی فضا را افزایش داده اما طبق جدول ۴، با یک‌پوش چشمگیر میزان نیاز به ارزی الکتریکی برای سرمایش و گرمایش‌بندی است. درایند و حالت زاند این مسئله هست که به دلیل تابی منابع آفتاب به فضاهای داخلی در حالت بدون ایوان نسبت به حالت وجود ایوان بدون دیواره مشبک در طبقات مختلف تقریباً با اندازه ۴۰۰ کیلو وات ساعت میزان انرژی لازم برای سرمایش را کاسته‌است. برای مثال این کاهش در طبقه قم تقریباً معادل ۱۹٪ بوده است. این ایوان توانایی‌ای با جلوگیری از ورود مستقیم آفتاب به داخل فضا و خنک ماندن جداره خارجی را به ایوان و موجب ایجاد اختلاف دمایی و نسبی و در نتیجه کاهش چشمگیر دمای داخلی شود. این‌گونه مشاهده می‌تواند منبت ایوان در خنک کردن فضای داخلی است. استفاده از ایوان مشبک در کاهش حرارت هوا در روزهای چگونه در سال که دارای تابی منابع آفتاب می‌باشد تاثیر بیشتری خواهد داشت. در فصولی همچون تابستان می‌توان ایوان مشبک از تابی منابع آفتاب به وسیله ایوان مشبک موجب خنک ماندن فضا خواهد شد.
همچنین اگرچه در حالات وجود ایوان با جداره مشیک نسبت به عدم وجود ایوان نیز شاهد افزایش 1 درصدی میزان

استفاده از انرژی برق روشنایی فضا بوده است. اما طبق جدول 4، با مقایسه میزان نیاز به انرژی الکتریکی برای سرمایش در این دو حالت شاهد این مسئله هستیم که وجود ایوان با جداره مشیک نیز موجب کاهش انرژی لازم برای سرمایش

فضا گردیده است. برای مثال این کاهش در طبقهی سوم تقییا معادل 20% بوده است. در نتیجه تأثیر وجود دیواره مشیک در خنکتر شدن فضای داخلی در این طبقه از ایوان بدون جداره مشیک به اندازه ی/1% بیشتر است.

با مشاهده اعداد مربوط به مقایسه ی نیاز ساختمان به سرمایش در حالت وجود ایوان با دیواره مشیک و وجود ایوان بدون دیواره مشیک در همین حالت که وجود جداره مشیک نیز در خنکتر شدن فضای داخلی به تایی

نخواهد. به طور مثال تأثیر وجود جداره مشیک در کاهش مصرف انرژی برای سرمایش نسبت به عدم وجود این جداره.

در طبقهی اول و دوم حدودا برای با 1/1%، طبقهی سوم 1/1% و طبقهی چهارم 1/8% بوده است.

جدول 4: مقایسه میزان نیاز به انرژی الکتریکی برای سرمایش در حالات بدون ایوان و وجود ایوان بدون جداره مشیک

<table>
<thead>
<tr>
<th>سرمایش (الکتریسیستم بر حسب کیلو وات ساعت)</th>
<th>وجود ایوان بدون دیواره مشیک (الکتریسیستم بر حسب کیلو وات ساعت)</th>
<th>جدول اول</th>
<th>طبقه اول</th>
<th>1641</th>
<th>1621</th>
<th>2049</th>
</tr>
</thead>
<tbody>
<tr>
<td>طبقه دوم</td>
<td>1624</td>
<td></td>
<td>1606</td>
<td></td>
<td>2028</td>
<td></td>
</tr>
<tr>
<td>طبقه سوم</td>
<td>1624</td>
<td></td>
<td>1591</td>
<td></td>
<td>2014</td>
<td></td>
</tr>
<tr>
<td>طبقه چهارم</td>
<td>1612</td>
<td></td>
<td>1581</td>
<td></td>
<td>1980</td>
<td></td>
</tr>
</tbody>
</table>

نتایج کلی:

با توجه به نقش مهم و عملکردی ایوان در اقلیم شمال کشور در پژوهش حاضر که میزان مصرف انرژی برای تامین

روشنایی و سرمایش آپارتمانی مسکونی در بابلسر را در سه سال حالت بدون ایوان، وجود ایوان با جداره مشیک و وجود ایوان

بدون جداره مشیک مورد بررسی قرار داد نتایج زیر حاصل گردیده است.

الف. آپارتمان در حالت وجود ایوان بدون دیواره مشیک و با دیواره مشیک به مقدار 1 - 1/0% دخان انرژی

با افزایش انرژی لازم برای روشنایی گشته است و این در حالی است که در حال حالت وجود ایوان بدون دیواره مشیک و با دیواره مشیک

کاهش 21 - 19 % را در نیاز به انرژی بر منظور سرمایش شاهدیم.
ب: کمترین و بیشترین نیاز به انرژی به منظور سرمایش اپارتمان، به ترتیب مربوط به طبقه چهارم ساختمان دارای ایوان با جداره مشیک و طبقه اول ساختمان بدون ایوان بوده است. اختلاف مقدار این انرژی حدود 468 کیلووات ساعت بوده است.

برای پژوهش‌های آنی پیشنهاد می‌گردد تاثیر ابعاد حفره‌های موجود در دیواره‌های مشیک و ارتفاع ایان دیواره‌ها در کاهش یا افزایش نیاز به انرژی مورد بررسی قرار گیرد. همچنین پیشنهاد می‌شود با سایر نرم‌افزارهای مرتبط به حوزه انرژی تاثیر ابعاد ایوان در جذب ناحیه دیواره‌های مجاور آن مورد بررسی قرار گیرد. بررسی و پژوهش در زمینه نوع مصالح مورد استفاده در ایوان به‌نیز در کاهش مصرف انرژی از جمله مواردی است که می‌توان بدان برداخت.
مراجع

[1] ٘ٛسی، خؼفش. وشثبػی، ػجذاِشضب. ثشلؼیدٛس، ... گرچی‌پور، بالارود، و زانگ‌می، مشهد (1387). ارائه راهکارهای اجرایی و مدیریتی جهت کاهش مصرف انرژی الکتریکی در ساختمان‌های عمومی، علوم و فن اوری محوطه‌سازی، دهم، شماره 50-37.

[2] ترشیزی، ابراهیم، ابراهیم، مهابد (1393). مدارک بر روی پردازش‌های گروه‌گردی و روش‌های روش‌نامه‌ای در مهساختمان‌ها. نشریه‌ی اثر ایران، سال 17، شماره 16، صفحات 50-67.

[10] خیاتی، مهران، برجسته‌ی، مهدی‌نژاد (1390). ارائه سیستم‌های نرم‌افزاری نسبت به میزان تابش ساختمان‌های مختلف اروپا در اقلیم خاص ایران. نشریه انرژی ایران، دهم 17، شماره 4، صفحات 80-69.

Evaluation of the effects of porches in residential buildings on optimizing the annual energy consumption

Seyedeh Mahsa Bagheri 1, Maria Kordjamshidi 2, Shima Piraste 3

Received:

ABSTRACT

In our country, Iran, one of the most important centers of energy consumption is residential buildings. The energy consumption can be reduced by suitable innovative architectural design. Porch is a main element architecture in the north of Iran designed unsuitably in the most of the residential buildings in these days.

This study tries to research the annual energy consumption of the building by modifying the design pattern.

In this case, the energy consumption for heating and lighting is analyzed in three patterns:

- Apartment without porch, apartment with porch with lattice walls and apartment with porch without lattice walls in Babolsar, Tabarestan, Iran by energyplus software. The results show that the designed porch of the apartments has positive effect on reducing energy consumption.

Keywords: Porch, Lighting Supply, cooling, energy consumption, residential architecture.

1) Master of Architecture, Mazandaran university. Tel: 09112564130. Email: Mahsa.bagheri_1989@yahoo.com (Corresponding Author)
2) Assistant Professor of Mazandaran university. Email: m.kordjamshidi@umz.ac.ir
3) Bachelor of Architecture, Mazandaran university. Email: shima.pirasteh@gmail.com