انرژی نقش اساسی در فرایند تولید و رفاه اجتماعی داشته و پیشبینی تقاضای آن به منظور تنظیم بازار و عرضه مطمئن آن امری ضروری میباشد. با توجه به روند پرنوسان و غیرخطی تقاضای انرژی و متغیرهای موثر بر آن، مدلهای غیرخطی بخصوص شبکه-های عصبی و الگوریتم انبوه ذرات در این امر توفیق بیشتری داشتهاند. با توجه به اینکه در کنار نقاط قوت فراوان، این تکنیکها دارای نقاط ضعفی مانند نیاز به تعیین فرم تبعی خاص، نیاز به دادههای آموزشی فراوان و ضعف در یافتن نقطه بهینه سراسری نیز می-باشند، در این مطالعه با ادغام آنان به صورت یک الگوریتم ترکیبی این نقایص مرتفع شده است. پس از بکارگیری و مقایسه این تکنیک ترکیبی با سایر روشها در پیشبینی تقاضای انرژی طی سالهای 1346 تا 1390 ، نتایج مطالعه قدرت پیشبینی بالاتر تکنیک ترکیبی در کنار قدرت توضیحدهندگی متغیرهای توضیحی بکار رفته را تائید میکند.
Sohrabi Vafa H, Noori F, Ebadi M. Energy Demand Prediction by Using Neural Network based on Patricle Swarm Optimization. IJE 2013; 16 (3) URL: http://necjournals.ir/article-1-550-fa.html
سهرابی وفا حسین، نوری فاطمه، عبادی مرتضی. پیشبینی تقاضای انرژی با استفاده از شبکه عصبی مبتنی بر الگوریتم انبوه ذرات. نشریه انرژی ایران. 1392; 16 (3)