[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
The 9th International Energy Conference
..
:: Volume 23, Issue 3 (12-2020) ::
IJE 2020, 23(3): 61-83 Back to browse issues page
Modeling and Removal of Hydrogen Sulfide from Biogas Produced by Anaerobic Digestion
Mojtaba Masoumi * , Kaveh Kalatar Hormozi
, Mojtabamasoumi95@yahoo.com
Abstract:   (1478 Views)
Anaerobic digestion can be used to convert organic waste into energy not only to provide renewable energy, but also reduce greenhouse gases. During the anaerobic digestion process, biogas is produced, which can be used for heating and electricity generation. The produced biogas contains methane and some other gases, the most destructive of which is hydrogen sulfide gas. If hydrogen sulfide gas exists, it will cause corrosion and damage to facilities. In this study, to produce energy in the form of flammable biogas, different combinations of kitchen waste and poultry manure were used to optimize and increase the amount of biogas according to the available organic matter composition. The results showed the best combination of poultry manure and kitchen waste in proportion. Equivalence and the adsorption of hydrogen sulfide gas with adsorbents (ironstone) was examined to the aim of the production of impurities reduction in gas. This indicates the removal of the gas in a different time period than the produced gas. In this study, three modified Gompertz models, modified logistics and no delay phase model were investigated to determine which model predicts the best biogas production. The first two models, Gompertz and modified logistics, well matched the data with accuracy, but the No-lag model shows some errors due to lack of the delay phase consideration in biogas production. Considering the amount of biogas produced in different digesters, the results show that the potential for biogas production for the ratio (KW + CM) with the amount of .11000ml is more than other cases.
Keywords: Biogas, Anaerobic digestion, Chicken manure, Kitchen waste, Hydrogen sulfide, modeling
Full-Text [PDF 659 kb]   (668 Downloads)    
Type of Study: Research | Subject: Energy and Environment
Received: 2021/01/9 | Accepted: 2021/02/8 | Published: 2020/12/19
References
1. [1] تقی نژاد, جبراییل, عبدی, & عدل. (2018). مدل‌سازی فرآیند تولید بیوگاز از فضولات گاوی در هاضم اختلاط کامل با تغذیه نیمه‌پیوسته. ماشین های کشاورزی, 8(1), 159-169.‎
2. [2] صفری, محمود, عبدی, & عدل. (2016). بررسی استحصال بیوگاز از پسماندهای ساقۀ کلزا، محتویات شکمبه وکود گاوی. تحقیقات سامانه‌ها و مکانیزاسیون کشاورزی, 16(65), 93-108.‎
3. [3] A. Gallipoli, C. M. Braguglia, A. Gianico, D. Montecchio, and P. Pagliaccia, "Kitchen waste valorization through a mild-temperature pretreatment to enhance biogas production and fermentability: Kinetics study in mesophilic and thermophilic regimen," J. Environ. Sci. (China), vol. 89, no. November, pp. 167-179, 2020. [DOI:10.1016/j.jes.2019.10.016]
4. [4] Akbaş, H., Bilgen, B., & Turhan, A. M. (2015). An integrated prediction and optimization model of biogas production system at a wastewater treatment facility. Bioresource technology, 196, 566-576. [DOI:10.1016/j.biortech.2015.08.017]
5. [5] Awe, O. W., Zhao, Y., Nzihou, A., Minh, D. P., & Lyczko, N. (2017). A review of biogas utilisation, purification and upgrading technologies. Waste and Biomass Valorization, 8(2), 267-283. [DOI:10.1007/s12649-016-9826-4]
6. [6] Braguglia, C. M., Gallipoli, A., Gianico, A., & Pagliaccia, P. (2017). Anaerobic bioconversion of food waste into energy: A critical review. Bioresource technology, 248(Pt A), 37-56. [DOI:10.1016/j.biortech.2017.06.145]
7. [7] Can, A. (2020). The statistical modeling of potential biogas production capacity from solid waste disposal sites in Turkey. Journal of Cleaner Production, 243, 118501. [DOI:10.1016/j.jclepro.2019.118501]
8. [8] Das, A. K., & Panda, A. K. (2020). Effective utilisation of kitchen waste to biogas by anaerobic co-digestion. In Recent Developments in Waste Management (pp. 1-10). Springer, Singapore. [DOI:10.1007/978-981-15-0990-2_1]
9. [9] Dennehy, C., Lawlor, P. G., Croize, T., Jiang, Y., Morrison, L., Gardiner, G. E., & Zhan, X. (2016). Synergism and effect of high initial volatile fatty acid concentrations during food waste and pig manure anaerobic co-digestion. Waste Management, 56, 173-180. [DOI:10.1016/j.wasman.2016.06.032]
10. [10] Farid Haghighat, et al. (2019). The effect of thermochemical pre-treatment on biogas production efficiency from kitchen waste using a novel lab scale digester. Renewable Energy Focus, 28, 140-152 [DOI:10.1016/j.ref.2018.12.001]
11. [11] Iqbal, S. A., Rahaman, S., Rahman, M., & Yousuf, A. (2014). Anaerobic digestion of kitchen waste to produce biogas. Procedia Engineering, 90, 657-662. [DOI:10.1016/j.proeng.2014.11.787]
12. [12] Journal, T. S. W. (2017). Retracted: microbial ecology of anaerobic digesters: the key players of anaerobiosis. The Scientific World Journal, 2017. [DOI:10.1155/2017/3852369]
13. [13] Khan, I. U., Othman, M. H. D., Hashim, H., Matsuura, T., Ismail, A. F., Rezaei-DashtArzhandi, M., & Azelee, I. W. (2017). Biogas as a renewable energy fuel-A review of biogas upgrading, utilisation and storage. Energy Conversion and Management, 150, 277-294. [DOI:10.1016/j.enconman.2017.08.035]
14. [14] Mao, C., Feng, Y., Wang, X., & Ren, G. (2015). Review on research achievements of biogas from anaerobic digestion. Renewable and sustainable energy reviews, 45, 540-555. [DOI:10.1016/j.rser.2015.02.032]
15. [15] Mondal, C., & Biswas, G. K. (2014). Effect of temperature on kinetic constants in anaerobic bio-digestion. [DOI:10.15415/ccr.2013.11001]
16. [16] Mutungwazi, A., Mukumba, P., & Makaka, G. (2018). Biogas digester types installed in South Africa: A review. Renewable and Sustainable Energy Reviews, 81, 172-180. [DOI:10.1016/j.rser.2017.07.051]
17. [17] Okoro, O. V., & Sun, Z. (2019). Desulphurisation of biogas: a systematic qualitative and economic-based quantitative review of alternative strategies. ChemEngineering, 3(3), 76. [DOI:10.3390/chemengineering3030076]
18. [18] Panigrahi, S., Sharma, H. B., & Dubey, B. K. (2020). Anaerobic co-digestion of food waste with pretreated yard waste: a comparative study of methane production, kinetic modeling and energy balance. Journal of Cleaner Production, 243, 118480 [DOI:10.1016/j.jclepro.2019.118480]
19. [19] Patil, J. H., Raj, M. A., Muralidhara, P. L., Desai, S. M., & Raju, G. M. (2012). Kinetics of anaerobic digestion of water hyacinth using poultry litter as inoculum. International Journal of Environmental Science and Development, 3(2), 94. [DOI:10.7763/IJESD.2012.V3.195]
20. [20] Saksrithai, K., & King, A. J. (2018). Controlling hydrogen sulfide emissions during poultry productions. J Anim Res Nutr, 3(1), 2. [DOI:10.21767/2572-5459.100040]
21. [21] Tasnim, F., Iqbal, S. A., & Chowdhury, A. R. (2017). Biogas production from anaerobic co-digestion of cow manure with kitchen waste and Water Hyacinth. Renewable Energy, 109, 434-439. [DOI:10.1016/j.renene.2017.03.044]
22. [22] Westerholm, M., Liu, T., & Schnürer, A. (2020). Comparative study of industrial-scale high-solid biogas production from food waste: Process operation and microbiology. Bioresource technology, 304, 122981. [DOI:10.1016/j.biortech.2020.122981]
23. [23] Zhai, N., Zhang, T., Yin, D., Yang, G., Wang, X., Ren, G., & Feng, Y. (2015). Effect of initial pH on anaerobic co-digestion of kitchen waste and cow manure. Waste management, 38, 126-131. [DOI:10.1016/j.wasman.2014.12.027]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Masoumi M, Kalatar Hormozi K. Modeling and Removal of Hydrogen Sulfide from Biogas Produced by Anaerobic Digestion. IJE 2020; 23 (3) :61-83
URL: http://necjournals.ir/article-1-1610-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 23, Issue 3 (12-2020) Back to browse issues page
نشریه انرژی ایران Iranian Journal of Energy
Persian site map - English site map - Created in 0.05 seconds with 39 queries by YEKTAWEB 4645